
90C701
for Advanced
Communication
Systems

Preview - November 1995

Semiconductor

TEMIC / MATRA MHS FAX-IT
We Want Your Comments

FAX (+33) 1-30 60 71 57
e-mail : c701.preview@matramhs.fr

MATRA MHS 90C701

Rev.C (13/11/95) Preview 1

TEMIC / MATRA MHS SPARClet TM Applications
Engineering provides a Fax number and an e-mail
address for your comments about the content of the
Advanced Communication Controller 90C701 Preview.
We welcome your suggestions.

When referring to items in the preview, please reference
the section number, page number, line number, and, if
applicable, figure number and table number.

When sending a FAX or e-mail, please provide your
name, company name, FAX number, and phone number.

The information contained herein is subject to change
without notice. No responsibility is assumed by MATRA
MHS SA for using this publication and/or circuits
described herein: nor for any possible infringements of
patents or other rights of third parties which may result
from its use.

About this Preview

The 90C701 is the first in the SPARClet TM microcontrollers family
and provides the basis for developing further derivative compatible
products already forecasted.

The goal of this preview is to define the features and functionality of
the 90C701 microcontroller for project leaders, system architects,
hardware and software designers. The 90C701 preview has been
organized accordingly. This document is composed of three main
chapters:

Chapter I : Product Overview

The product overview lists the main features of the product without
going to detailed functionality.

Chapter II : Product Architecture

The product architecture chapter includes the sections called
"SPARCletTM Architecture" and "The 90C701 as a SPARClet TM

Implementation". Main SPARClet TM implementation dependant
features are described.

Chapter III : Product Description

The product description chapter is organized around the "90C701
Programming Model" and the "90C701 Operations and Registers
Description" sections. These two parts give a detailed information on
memory organization, instructions set, registers organization and
associated operations.

The following additional reading are suggested.

The SPARC Architecture Manual Version 8, SPARC International,
Inc.
SPARC-V8 Embedded (V8E) Release 1 Architecture Specification.

This can provide background to the information in this preview.

90C701 MATRA MHS

2 Preview Rev.C (13/11/95)

Table of Content
page

Chapter I Product Overview
1 90C701 Microcontroller Overview . 7.
 1.1 The CPU Core . 7.
 1.2 The Core Bus . 8.
 1.3 Bus Interface & Debug Support . 8.
 1.4 On-Chip Peripherals . 8.
 1.5 Features . 9.

Chapter II Product Architecture
2 SPARCletTM Architecture . 11.
 2.1 Performance Challenge . 11.
 2.1.1 Cycle Per Instruction (CPI) . 11.
 2.1.2 Instructions Per Task (IPT) . 12.
 2.2 Operating System Support . 14.
3 The 90C701 as a SPARCletTM Implementation . 15.
 3.1 The 90C701 CPU Core . 15.
 3.1.1 Resource Conflicts . 16.
 3.1.2 Execution Units . 17.
 3.1.3 Load/Store Unit . 17.
 3.1.4 Arithmetic and Logic Unit . 17.
 3.1.5 Communication Coprocessor . 17.
 3.1.6 Instruction Cache . 18.
 3.1.7 Data Cache . 21.
 3.2 The 90C701 Core Bus . 24.
 3.3 90C701 On-Chip Peripherals . 25.
 3.3.1 Bus Interface Controller (BIC) . 25.
 3.3.2 PCM/USART . 27.
 3.3.3 General Purpose Timer . 28.
 3.3.4 OS Timers . 28.
 3.3.5 Watchdog . 28.
 3.3.6 Peripheral Interface Adapter (PIA) . 28.

Chapter III Product Description
4 90C701 Programming Model . 31.
 4.1 SPARC Compliance . 31.
 4.1.1 The 90C701 and the SPARC V8 . 31.
 4.1.2 The 90C701 and the SPARC V8 Complement - SPARC V8E 31.
 4.2 Memory Organization . 32.
 4.2.1 System Control Segment (SCS) . 32.
 4.2.2 Input/Output Segment (IOS) . 33.
 4.2.3 Not Cacheable Memory Segment (NCMS) . 34.
 4.2.4 Cacheable Memory Segment (CMS) . 34.
 4.2.5 Logical to Physical MIOS Addresses Translation . 35.
 4.3 Data Types and Alignment . 37.
 4.4 Registers . 37.
 4.4.1 Processor State Register (PSR) . 38.
 4.4.2 Ancillary State Registers (ASRs) . 39.
 4.5 Branching Control . 42.
 4.6 Interrupts, Traps, and Exceptions . 42.
 4.7 90C701 Additional Instructions . 45.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 3

Table of Content
page

 4.7.1 SCAN instruction . 46.
 4.7.2 SHUFFLE instruction . 47.
 4.7.3 MAC instructions . 48.
 4.7.4 CPRDCXT / CPWRCXT: Read / Write an Communication
 Coprocessor Context Register .

49.

 4.7.5 CPPUSH[a] : . 50.
 4.7.6 CPPULL . 51.
 4.7.7 CBccc . 52.
5 90C701 Operations and Register Description . 53.
 5.1 Communication Coprocessor . 53.
 5.2 Bus Interface Controller . 55.
 5.3 PCM/USART . 61.
 5.3.1 Register mapping . 61.
 5.3.2 Transmitter section . 62.
 5.3.3 Receiver section . 65.
 5.4 Real-Time and General Purpose Peripherals . 66.
 5.4.1 Timers . 66.
 5.4.2 Peripheral Interface adapter (PIA) . 70.
6 90C701 Pin Out . 71.
7 90C701 Basic Configuration . 73.

List of Figures
page

Figure 1. 90C701 block diagram . 7.
Figure 2. RISC instruction pipeline . 11.
Figure 3. SPARCletTM instruction pipeline . 12.
Figure 4. SPARCletTM Pipeline Scheduling - dot product inner loop 13.
Figure 5. 90C701 CPU Core . 15.
Figure 6. Core bus interconnection . 24.
Figure 7. Example of interleaved transactions on core bus . 24.
Figure 8. 90C701 Bus Interface Controller . 25.
Figure 9. Memory and I/O Addressing Space (MIOS) . 26.
Figure 10. PCM/USART Block Diagram . 27.
Figure 11. Segment Organization . 32.
Figure 12. System Control Segment . 32.
Figure 13. Input/Output Segment . 33.
Figure 14. Cacheable Memory Segment . 34.
Figure 15. Logical to Physical MIOS Addresses Translation. 35.
Figure 16. Alternate Window Registers . 38.
Figure 17. Communication Coprocessor Block Diagram . 53.
Figure 18. DSEL¯¯¯¯¯ ̄and DBE timings when Addresses are not multiplexed 55.
Figure 19. DSEL¯¯¯¯¯ ̄and DBE¯¯¯¯ timings when Addresses are multiplexed. 56.
Figure 20. 90C701 Basic Board Configuration . 73.

90C701 MATRA MHS

4 Preview Rev.C (13/11/95)

List of Tables
page

Table 1. Resource conflicts on register file fetch . 16.
Table 2. Instruction Cache Features . 18.
Table 3. Instruction Cache Address Decoding . 18.
Table 4. Instruction Cache Tag Register . 18.
Table 5. LRU Support Register . 19.
Table 6. Instruction Cache Control Register . 19.
Table 7. Instruction Cache Controller Address Decoding . 19.
Table 8. Data Cache Features . 21.
Table 9. Data Cache Address Decoding . 21.
Table 10. Data Cache Tag Register . 21.
Table 11. Data Cache Control register (DCCR) . 22.
Table 12. Data Cache Controller Address Decoding . 22.
Table 13. Possible System Configurations . 26.
Table 14. 90C701 on-chip peripherals mapping . 33.
Table 15. 90C701 Processsor State Register (PSR) . 38.
Table 16. Implementation Extension Register (ASR17) . 39.
Table 17. Performance Counting Register (ASR18) . 40.
Table 18. Fault Status Register (ASR21) . 40.
Table 19. Alternate Window Configuration Register (ASR22) 40.
Table 20. Coprocessor State Register . 41.
Table 21. Exception and Interrupt Request Priority and tt Values 43.
Table 22. 90C701 Interrupt sources . 44.
Table 23. 90701 Additional Instruction Set . 45.
Table 24. SCAN instruction . 46.
Table 25. SHUFFLE instruction . 47.
Table 26. MAC instructions . 48.
Table 27. CPRDCXT / CPWRCXT Instruction Set . 49.
Table 28. CPPUSH[a] Instruction Set . 50.
Table 29. CPPULL Instruction Set . 51.
Table 30. CBccc Instruction Set . 52.
Table 31. Device Control Register (DCR) . 56.
Table 32. Device Timing Control Register (DTCR) . 58.
Table 33. Refresh Register (RR) . 59.
Table 34. SpaceMap Register (SMR) . 60.
Table 35. PCM/USART registers. 61.
Table 36. PCM/USART register mapping . 61.
Table 37. Transmitter Command Register (TCR) . 62.
Table 38. Transmitter Sync Register (TSR) . 63.
Table 39. Transmitter Interface Register (TIR) . 64.
Table 40. Transmitter Status Register (TSTR) . 64.
Table 41. Receiver Command Register (RCR) . 65.
Table 42. Receiver Synchronisation Register (RSR) . 65.
Table 43. Receiver Interface Register (RIR) . 66.
Table 44. Receiver Status Register (RSTR) . 66.
Table 45. Peripherals programming instructions . 66.
Table 46. Operating System Timer . 66.
Table 47. Timer Input Handler Register (TIHR) . 68.
Table 48. Shaper Register (TSHR) . 68.
Table 49. PIA Command Register (PCR) . 70.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 5

Chapter I

Product Overview

90C701 MATRA MHS

6 Preview Rev.C (13/11/95)

90C701 : Advanced Communication Controller

1 90C701 Microcontroller Overview
The 90C701 is an embedded SPARC processor with integrated communication peripherals. Built
around a SPARCletTM CPU core, it includes the most frequently needed peripherals in advanced
communication applications. The 90C701 is specially adapted for communication applications such as
digital cellular base stations, bridges, routers, optical frame relay, ISDN adapters, and communication
card controllers.

Figure 1. 90C701 block diagram

The 90C701 consists of a high-performance RISC fixed-point processor with integrated memories
and devices controller, peripheral interface adapter, timers, USARTs, and JTAG port controllers.

1.1 The CPU Core

The CPU core integrates four execution units including a hardware multiplier (MUL),
communication coprocessor (CCP), arithmetic and logic unit (ALU) and load-store unit (LSU). The
8 KB Data cache and 16 KB Instruction cache are integrated also and both use a four-way associative
organization scheme. The CPU executes one instruction per cycle. Accordingly, all operations which
require several cycles to be completed, are executed concurrently. For example, if the 90C701 is
waiting for data coming back from the memory while the CPU is multiplying, both processing and
transactions are done in parallel.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 7

1.2 The Core Bus

The 90C701 core bus is the main link between the instructions cache, the data cache, the I/O-memory
interface units and the on-chip peripherals bridge. Using a split cycle bus protocol, each transaction is
tagged and exploits the full bandwidth of the core bus, even in presence of wait states. According to
the SPARCletTM core bus protocol, the CPU performs the requests in order but the results comes back
out of order.

1.3 Bus Interface & Debug Support

The Bus Interface Controller (BIC) supports external I/O devices and memory banks of different
speeds through a user-programmable interface. The I/O-memory bus is organized through a 32-bit
data bus, addressing for 256 MB of external memory and peripheral devices. The 90C701 controls
directly DRAM, SRAM, ROM and I/O devices in a 48 MB address space. The BIC supports also
multimaster configuration.

Debug is supported by the JTAG port (IEEE 1149.1 compliant). This features a TAP (Test Access
Port) which provides the support for accessing internal SPARClet TM core bus agents as well as
standard Boundary SCAN functions.

1.4 On-Chip Peripherals

The 90C701 provides four synchronous-asynchronous serial interfaces. According to the available
CPU load budget in the application, the transmission speeds can be in the range from 2 Mbits to 8
Mbits. For example, four transmissions at 2 Mbits can be achieved in full duplex, requiring only 30
% of the CPU load at 40 MHz. The physical interface of the serial port supports the PCM, UART,
and USART signals, through a user-programmable interface.

Timers, Watchdog, and PIA are also on-chip peripherals. The OS Timers provide the time base to
support the task and event scheduling activities of real-time operating systems. The General Purpose
timers support several modes such as PWM (pulse width modulation). The Peripheral Interface
Adapter (PIA) features up to 10 user-programmable general purpose input/output ports.

90C701 MATRA MHS

8 Preview Rev.C (13/11/95)

1.5 Features

Fully static SPARCletTM CPU core

On-chip clock frequency multiplier

Industrial range operating frequency
30 MHz at 3.3V (+/- 10%)
50 MHz at 5V (+/- 10%)

V8 compliant SPARC Processor
Little & Big Endian data supported
Transparent power management system
Mulitply and Accumulate instruction
Bit scanning and bit shuffling instructions
8 Register Windows
Alternate Window Registers

Instruction Cache
16 KBytes
four-way associativity
eight-words line size
Lockable by bank
Full LRU replacement algorithm

Data Cache
8 KBytes
four-way associativity
four-words line size
Lockable by bank
Write through and copy back support
Full LRU replacement algorithm
8 entries store buffer
No write allocation

Bus Interface Controller (BIC)
256 Mbytes address space
DRAM interface with programmable refresh
SRAM interface
ROM interface
Multimaster bus support
8-bit boot feature
Control signals generated for 48 Mbytes.

Communication Coprocessor (CCP)
Coder/Decoder/CRC
supported protocols : HDLC,V.110, proprietary
50 Mbit per second max. @ 50MHz

Peripheral Interface Adapter
10-bit bidirectional port
Lockable directions for secure design

Timers
2 General Purpose Timers
2 Operating System Timers
1 Watchdog

USART/PCMs
4 supported

 Distributed interrupt control logic
software programmable interrupt levels

JTAG with Boundary Scan

208-pin PQFP and 240-pin PGA packages

0.6 µm, 3 metal layers CMOS technology

MATRA MHS 90C701

Rev.C (13/11/95) Preview 9

Chapter II

Product Architecture

90C701 MATRA MHS

10 Preview Rev.C (13/11/95)

2 SPARCletTM Architecture
The SPARCletTM architecture is a SPARC V8 RISC based processor. Enhancements have been made
to merge data processing and real-time control execution on the same cost-effective central
processing unit. Combining parallel operational units and superscalar techniques, SPARClet TM

provides the best trade-off regarding the price/performance ratio.

SPARCletTM is particularly well adapted for emerging advanced communication systems which
require high-performance embedded computing devices to support new applications such as real-time
speech recognition or image processing. SPARClet TM is a general purpose architecture including
Digital Signal Processing functions specially designed to address these requirements.

2.1 Performance Challenge

The performance of a processor can be defined as the time required to accomplish a specific task and
is expressed as the product of two factors:

Time per Task = CPI * IPT

CPI = Cycle Per Instruction

IPT = Instruction per Task

Performance can be improved by reducing any of these two factors. RISC-type designs strive to
improve performance by minimizing the first factor. In the following sections, the SPARClet TM

advantage in these performance-related factors, is highlighted.

2.1.1 Cycle Per Instruction (CPI)

One of the main benefits of using SPARClet TM is its high performance/power consumption ratio
(Mips/mWatt) as represented by the number of CPI (Cycles Per Instruction).

As with other RISC processors, SPARClet TM exploits the instruction pipeline and the load/store
popular architecture. Accordingly, the SPARClet TM instruction pipeline works by dividing the
execution of each instruction into four stages as shown in Figure 2 :

Fetch (F) Decode (D) Execute (E) WriteBack (WB)

Figure 2. RISC instruction pipeline

According to the RISC concept one instruction is fetched and decoded each cycle. However,
enhancements have been made in the pipeline control to exploit the natural parallelism of the executed
operations. In the SPARClet TM architecture all instructions requiring several cycles, such as multiply,
load/store, and co-processor instructions, operate in parallel with the arithmetic and logic
instructions. Accordingly, after the fetch stage the instruction is broadcast to the different execution
units (including the fetch unit, which is responsible for control transfer instructions). Each execution
unit is responsible for decoding, executing, and writing results in the register file. Consequently,
results are written back out of order.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 11

Figure 3. SPARCletTM instruction pipeline

Load instructions read data from memory into processor registers for later processing by subsequent
instructions. Because memory typically operates at much slower speeds than the processor, the loaded
operand is not immediately available for subsequent instructions in a processor with an instruction
pipeline. The technique used in many RISC designs to handle this data dependency is to rely on the
compilers to handle the inherent latency and respect the load delay. Usually, to keep one CPI, the load
delay must be one instruction. In SPARClet TM the latency or the duration of load delay covers the
execution of several instructions.

Accordingly, the SPARClet TM CPU needs one effective-cycle per instruction while traditional RISC
based architecture will need 2 or 3 cycles in average to operate in applications. Wait states can be
inserted for only two reasons : resource conflicts (a resource is already busy executing an operation
and instruction needs it). and data dependencies (an instruction needs a data which is not yet
available).

2.1.2 Instructions Per Task (IPT)

The number of executed instructions depends on the optimizing techniques used in compilers, such as
register allocation, redundancy elimination, replacement algorithms with faster operation
(Multiply-and-accumulate, bit shuffling or scanning), loop optimization, and pipeline scheduling. The
SPARCletTM architecture contributes to the reduction of instructions per task in two manners:

New instructions to support digital signal algorithms:

Multiply-and-accumulate instruction (MAC):

Accumulation is executed without an extra cycle. The speed of the MAC is the speed
of the multiplier.

Bit scanning instruction (SCAN):

The SCAN instruction is particularly well suited to data normalization, priority
encoding and run, length and coding algorithms. It replaces 30 scalar instructions.

Bit shuffling instruction (SHUFFLE):

The SHUFFLE instruction executes bit, couples,digits,byte, nibble, and half-word
swapping, and supports efficiently the data endianess issue.

90C701 MATRA MHS

12 Preview Rev.C (13/11/95)

Pipeline scheduling:

In pipeline scheduling techniques the compilers schedule and reorganize instructions to ensure that
pipeline delay slots are filled with useful instructions as illustrated earlier in the description of load
delays.

The following task (dot product) shows the benefit of the instruction reordering generated by the
compiler. In this example, some of the 5 instructions in the inner loop require multiple cycles
operations, such as the four-cycles latency Multiply-and-Accumulate (UMAC) instruction and the
two-cycles latency Load (LD) instruction. A regular RISC processor will need 13 cycles to execute
the loop. SPARCletTM will do the same loop with only five cycles. Figure 4 shows the instruction
scheduling for the inner loop of the dot product algorithm..

ld [%g1+%l0], %l1
ld [%g2+%l0], %l3
subcc %l0, 4, %l0

Loop: umac %l1, %l3, %o1
ld [%g1+%l0], %l1
ld [%g2+%l0], %l3
bne Loop
subcc %l0, 4, %l0 ; always executed (delay slot)

Figure 4. SPARCletTM Pipeline Scheduling - dot product inner loop

In this example, the MAC instruction is ready to write back its result at the same time as load and
subcc instructions. Two wait states have to be added to the MAC instruction to return the result to the
register file. This resource conflict is described in the "Product Architecture" Chapter . Even with
these two wait states, the SPARClet TM architecture allows the processor to run at one CPI for this
application.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 13

2.2 Operating System Support

The performance gains obtained by providing support for operating systems are often subtle. The
SPARCletTM architecture supplies appropriate operating system support to enhance performance in
this domain. For example SPARClet TM supports Multiprocessor synchronization instructions. One of
them performs an atomic read-then-set-memory operation; another performs an atomic
exchange-register-with-memory operation. Enhancement has been done in order to provide fast trap
handlers. In this domain extra features are supported by the SPARClet TM, Single Vector Trapping and
Alternate Window Registers. The interrupt response has been

Single Vector Trapping

Single vector trapping can spare code space. Due to the SVT, the traps table size is reduced from 4KB
to four-words. After a trap has been taken, its Trap Type can be determined by reading the Trap Type
field, tt, of the Trap Base Register (TBR). This can be used by software to determine subsequent
processing of the trap.

 Alternate Window Registers

The Alternate Window Registers (AWR) consist of a separate set of 32 registers. The associated
mechanism allows routines which manipulate large amounts of data (such as trap handlers or software
direct memory access handlers) to switch context faster. This capability reduces the interrupt latency.
Each level of interrupt (IRL) can be associated to alternate window registers or not. The alternate
window registers avoid time loss in save/restore context operations.

Thanks to the SPARClet TM architecture, another real-time improvement has been accomplished
regarding the interrupt response time. The SPARClet TM CPU can process an interrupt routine while it
is executing memory loads/stores or multiplications. This characteristic allows a fast response time, as
well as better determinism in the behavior of the real-time applications. The typical time from the
interrupt detection (after de-glitching by the input handler in case of an external interrupt) to the trap
handler's first instruction fetch is 6 to 7 clock cycles.

90C701 MATRA MHS

14 Preview Rev.C (13/11/95)

3 The 90C701 as a SPARCletTM Implementation
3.1 The 90C701 CPU Core

The 90C701 CPU core consists of two main subsystems, the control block and the execution units
(Figure 5). The control block includes the Fetch and Decode unit and the three ports registers file and
all the CPU control registers. The fetch and decode unit gathers all the sequencing functions.

Figure 5. 90C701 CPU Core

The register file is a triple port static RAM array. The 136 32-bit registers are divided into a set of 128
registers and a set of 8 global registers. The 128 registers are grouped into eight overlapping sets of
24 registers called register windows. Each window shares eight registers with its two adjacent
windows. The Alternate Window Registers are an additional 32 registers window entered on specific
conditions detailed in the "Product Description" Chapter.

 The 90C701 CPU control registers include the Processor State Register (PSR), the Window Invalid
Mask (WIM) register, the Trap Base Register (TBR), the Program Counters (PC, nPC), and the
Ancillary State Registers (ASRs). A brief description of these registers is given in "Product
Description" Chapter .

MATRA MHS 90C701

Rev.C (13/11/95) Preview 15

Four internal buses are used to control the execution units, while one bus is used by the control block
to send the operation to the execution unit which will operate the decoded instruction. At the same
time two buses are used to provide the two source operands to the associated execution unit. At this
time the selected execution unit is responsible for the processing and the reporting activities of the
instruction. Concurrent processing is fully supported by a dedicated hardware interlock mechanism
which prevents any out-of-order data update. When the operation is completed, the execution unit
writes back the result to the register file, sharing the destination bus with the other execution units.

Instructions are accessed by the processor from memory and are executed, annulled, or trapped.
Instructions are encoded in three 32-bit formats and can be partitioned into five categories. The
categories are the load/store instructions, the integer arithmetic instructions, the control-transfer
instructions, Read/Write state registers, and Communication co-processor instructions. These
instructions are presented in the next Chapter. These five instruction categories are implemented on
four execution units which will be described below. These are the arithmetic and logic unit, the
multiplier unit, the load/store unit, and the communication co-processor.

3.1.1 Resource Conflicts

In a running situation (as already discussed in the chapter SPARClet TM Architecture), wait states can
be generated according to the resource conflict and/or to the data dependency. In most such cases,
the compiler can use techniques such as instruction reordering to minimize the performance impact
due to the data dependency between instructions.

Since the register file has only two read ports, some instructions, which need to access more than two
operands in the same cycle, will generate wait states. The following table illustrates this situation.

Operand fetch in register file Instruction example Wait state

no operand bicc, sethi, cppull,.. No
rs1 only add %r1, imm, %r2 No
rs1 and rs2 add %r1, %r2, %r3 No
rs1 and rd st %r2,[%r1+imm] No
rs1 and rd and rd+1 std %r2,[%r1+imm] (*)
rs1 and rs2 and rd st %r3,[%r1+%r2] (*)
rs1 and rs2 and rd and rd+1 std %r4,[%r1+%r2] (*)

Table 1. Resource conflicts on register file fetch

(*) Note: These instructions generate wait state only if following instructions use the second read port
of the register file.

Another source of conflict can be the write-back port of the register file. When the operation is
completed, each execution unit will ask to access to this port to write its result in the registers file. In
case of several write-back port requests during the same cycle, the execution units have to be
prioritized according to instruction classes:

90C701 MATRA MHS

16 Preview Rev.C (13/11/95)

Instruction class Priority

Control-transfer 1
Integer Arithmetic 2
Load/store 3
Communication Co-processor 4
Multiplier 5

 Level 1 is the highest priority.

There are also possible conflicts within execution units, especially with the communication
coprocessor, the multiplier, and the load/store units. In this case, the availability of the operators to
execute the next operation is the main reason of wait states insertion.

3.1.2 Execution Units

The execution units have been designed to support four classes of instructions. All run in parallel.
The first class consists of instructions regarding external CPU accesses, such as load and store
instructions, excepting the address generation. The second class is associated to the dedicated
processing, such as multiplications, multiply-and-accumulate and read and write Y register. The third
class, is specific to the 90C701 communication oriented co-processor instructions. The last class
includes the traditional arithmetic and logic instructions : in other words, all the scalar instructions
and the address generation function (JMPL, RETT, STORE, LOAD).

3.1.3 Load/Store Unit

The load/store unit is in charge of all the transactions between the CPU core, the data cache, and
memory-I/O external devices. The load/store unit can bufferize up to four ongoing loads once all
information has been sent to the data cache while it is waiting for data to come back. The load
instructions take one cycle to send an address. The store instructions can take from one to three cycles
according to resource conflict cases as shown above.

3.1.4 Arithmetic and Logical Unit

The ALU performs all integer arithmetic and logical instructions, which are generally
triadic-register-address instructions. The ALU computes a result that is a function of two source
operands, and either writes the result into the destination register r[rd] or discards it. One of the source
operands is always r[rs1]. The other source operand depends on the immediate operand bit (i) in the
instruction. If i=0 , the operand is r[rs2], but if i=1, the operand is the constant simm13 sign-extended
to a width of 32 bits. The ALU is also responsible for computing a 32-bit, byte-aligned memory
address for the Load and store instructions.

3.1.5 Communication Coprocessor

The coprocessor supports HDLC and V110 communication protocols: they require the following
functions:

- Coding messages, interleaving them with a byte granularity and transmitting the resulting bit stream
on a serial interface.
- Receiving a bit stream from a serial interface, allocating its bytes to different messages and decoding
them.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 17

The coding and interleaving functions are executed by the communication coprocessor, as well as the
reverse operations (decoding and byte allocation). It sustains a 1-bit per cycle throuput for medium
size messages. Serial bit stream transmission and reception are handled by an on-chip PCM interface,
capable to manage up to 8-Mb/sec full duplex data streams. Each PCM features 2 FIFO's of 12-Bytes
each to smoothen transmission and reception processes.

Synchronization between the coprocessor and the PCM peripheral is ensured by an interrupt
mechanism, with minimal context switching overhead, which supports 64-bit DMA transfers in less
than 20 cycles. The Alternate Window (detailed in Chapter Product Description), provides the DMA
pointers and counters for up to three full duplex channels.

Coding functions are user-programmable for both message modification ("zero" insertion or
suppression) and CRC computation (polynomial coefficients). This allows to support several protocol
families on the same silicon part. Real-time compromises (latency between consecutive DMA
interrupts, versus DMA throuput) are under user's control: he can program the PCM FIFO's threshold
for DMA interrupt generation. As a result, a 90C701 running at 50 MHz could manage a full duplex
4-Mb/sec HDLC stream, and keep 45 Mips available for additional users' needs.

3.1.6 Instruction Cache

The Fetch and Decode Unit processes instructions at a maximal rate of one CPI. Therefore, the
Instruction Cache is able to fetch the code with the same performance level, in order to maximise the
global throughput of the core.

Therefore, the 16 Kbytes Instruction Cache is split in 4 banks, according to a set associative scheme.
Up to 3 banks can be locked simultaneously, avoiding "miss penalty" for critical routines smaller than
4 Kbytes (which fits for most embedded applications, for example critical trap handlers). The
Instruction Cache features are summarized in the following table.

Feature Benefits

16-bytes (4 banks *128 lines * 8 words) Good trade-off for embedded applications
four-way associative High hit rate
eight-words line size Performance (bus traffic)
Lockable by bank Critical routines deterministic behavior
Least Recently Used (LRU) Performance

Table 2. Instruction Cache Features

Address decoding

The input address supplied by the Fetch and Decode Unit is decoded as follows :

Table 3. Instruction Cache Address Decoding

28-12 11-5 4-2 1-0

Tag Address Line number Word number 0 0

90C701 MATRA MHS

18 Preview Rev.C (13/11/95)

A Tag register is associated with each line of each bank (512 tag registers overall for the Instruction
Cache).

Table 4. Instruction Cache Tag Register
18-2 1 0

Tag Address P V

P : Privilege associated with the line (0:User, 1:Supervisor)
V : Valid bit

If the 18 most significant bits of the input address bits matches with the Tag Address field of one out
of the 512 Tag Registers, the required address is present in the cache (Cache Hit). Otherwise, the
Load/Store Unit (LSU) will have to wait for the data to be accessed in external memory (Cache Miss).

LRU algorithm

In order to support the LRU algorithm, a register of 8 bits has been dedicated for each line.

Table 5. LRU Support Register
7-6 5-4 3-2 1-0

LRU MRU

For each line, it contains 4 fields showing the Least Recently Used to Most Recently Used Bank
numbers order. For example "3120" in LRU register for line 3 means that line 3/bank 0 was used the
most recently, then bank2, then bank1 and bank 3 was the Least Recently Used.When a line has to be
reloaded (In case of a Cache Miss), the Least Recently Used bank will be updated from main memory.

All LRU control bytes have to be initialized at 0xe4 ("3210" in LRU register).

Lock mechanism

The lock status is controlled by a 3 bit Instruction Cache Control Register (ICCR) :

Table 6. Instruction Cache Control Register
2-1 0

_lock _enable

ICCR_enable When set, the Instruction Cache is enabled (initialized at 0 after Reset)

ICCR_lock Defines which banks are locked :
0 : no locked bank
1 : bank 3 is locked
2 : banks 3 and 2 are locked
3 : banks 3,2 and 1 are locked

Bank 0 is not lockable.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 19

Instruction Cache Controller Address Space

The Cache Tag registers, the LRU registers, and the Control register can be read or updated using
regular Store instructions in Supervisor mode.The address given in operand should be formatted as
follows :

Table 7. Instruction Cache Controller Address Decoding
31-19 18 17-16 15 14 13 12 11-5 4-2 1-0

1 100 000 000 000 Op Reg B3 B2 B1 B0 Line number Word number Byte number

Bits 31-19 are the Cache Controller Base address, fixed as shown on the table.

The Op field tells if it is an update ("0") or a check ("1").In case of a check, the data value given in
operand in the Store instruction will be compared to the checked register content and the operation
will return a Bus Error if the values are different.

Reg shows which register is to be checked/updated :

00 : Control Reg
01 : Cache memory

 10 : Cache Tag
11 : LRU register

B3..B0 : bank number (used for Cache Memory and Cache Tag). A "1" indicates that the
corresponding bank is selected. Any combination is legal.

Line number : used for Cache Memory , LRU register and Cache Tag.
Word number : for Cache Memory, indicates which word in the selected line is to be checked/updated
Byte number : for partial store, indicates which byte of the word is to be checked/updated (Used for
Cache Memory and the Cache Tag).

90C701 MATRA MHS

20 Preview Rev.C (13/11/95)

3.1.7 Data Cache

The Fetch and Decode Unit processes instructions at a maximal rate of one CPI. Therefore, the Data
Cache can be accessed (read or written) once per clock cycle, to maximize the global throughput of
the core. The 8Kbytes Data Cache is split in four banks, according to a set associative scheme. Up to
three banks can be locked, avoiding "miss penalty" for critical sets of data (constant tables for
example) .The different Data Cache parameters are summarized in the following table.

 Feature Advantage

8 Kbytes (4 banks * 128 lines * 4words) Good trade-off for Embedded applications
four-way set associative Allows four different contexts to use the same data set.
four-words line size Performance (bus traffic)
Lockable by bank Performance/Real-Time support
Copy back Performance (bus traffic)
Write through Real-Time support
Least Recently Used (LRU) Performance

Table 8. Data Cache Features

In addition to standard caching functionalities, the Data Cache provides transaction queues (for load
and store requests), so that multiple transactions can be handled simultaneously. Responses to load
requests do not necessarily come back in order, and may pass missing loads being processed. This
ability is called "hit-under-miss".

To maximize the performance gain of this enhancement, the Fetch and Decode Unit can generate
several Data Cache accesses and continue the processing flow without waiting for the Data Cache
responses, as long as no data dependency between consecutive instructions occured.

To support the "hit-under-miss" mechanism, the Data Cache and the Integer Unit respectively include
a Store Buffer (eight entries) and a Load Buffer (four entries). The associated benefit is a Data Cache
half as big as the Instruction Cache, with negligible impact on "miss penalty".

As the Data Cache implementation is very similar with the Instruction Cache, we will limit the
following description to the differences.

Address Decoding

The input address is decoded as follows :

Table 9. Data Cache Address Decoding

28-11 10-4 3-2 1-0

Tag Address Line number Word number Byte number

The Tag registers (one per line of each bank) :

Table 10.Data Cache Tag Register
22-4 3 2 1 0

Tag Address D F P V

D : Dirty line (line inconsistent with the memory content, happens when copy back is used
and the update not done).

MATRA MHS 90C701

Rev.C (13/11/95) Preview 21

F : Full support (When this line has been allocated, the memory controller guaranteed that an
error at the given address will never occur)

P : Privilege (0 for user)

V : line valid

Data Cache Control register (DCCR)

Two fields have been added to the Data Cache control register:

Table 11.Data Cache Control register (DCCR)
4 3 1-2 0

_copy_back _overtake_store _lock _enable

DCCR_ copy_back Enables the copy back when set

DCCR_overtake_store allows missed cacheable loads to overtake pending stores
when the targeted addresses are not in conflict.

DCCR_enable When set, the Instruction Cache is enabled (initialized at 0
after Reset)

DCCR_lock Defines which banks are locked :
0 : no locked bank
1 : bank 3 is locked
2 : banks 3 and 2 are locked
3 : banks 3,2 and 1 are locked

Bank 0 is not lockable.

Data Cache Controller Address Space

The Cache Tag registers, the LRU registers, and the Control register can be read or updated using
regular Store instructions in Supervisor mode.The address given in operand should be formatted as
follows :

Table 12.Data Cache Controller Address Decoding

31-18 17 16-15 14 13 12 11 10-4 3-2 1-0

11 001 000 000 000 Op Reg B3 B2 B1 B0 Line number Word number Byte number

Bits 31-18 are the Data Cache Controller Base address, fixed as shown on the table.

The Op field tells if it is an update ("0") or a simple check ("1").In case of a check, the data value
given in operand in the Store instruction will be compared to the checked register content and the
operation will return a Bus Error if the values are different.

90C701 MATRA MHS

22 Preview Rev.C (13/11/95)

Reg shows which register is to be checked/updated :

00 : Control Reg
01 : Cache memory

 10 : Cache Tag
11 : LRU register

B3..B0 : bank number (used for Cache Memory and Cache Tag. A "1" indicates that the
corresponding bank is selected. Any combination is legal)

Line number : used for Cache Memory , LRU register and Cache Tag
Word number : for Cache Memory, indicates which word in the selected line is to be checked/updated
Byte number : for partial store, indicates which byte of the word is to be checked/updated (Used for
Cache Memory and the Cache Tag).

MATRA MHS 90C701

Rev.C (13/11/95) Preview 23

3.2 The 90C701 Core Bus

The 90C701 core bus is the central link between the CPU core, memory, and peripherals. It can
support high bandwidth (32-bit word per cycle, 200 MB/s), even in presence of wait states through a
split cycle protocol. In other words a split cycle protocol allows interleaving accesses between all the
bus agents, which can be CPU (caches), memory, or peripherals. Each transaction has an associated
signature. All messages belonging to a transaction are sent with the associated signature. This core
bus provides the right support for critical word first block transfers through out-of-order responses
and word hint.

Other features include one cycle latency for bus acquisition through self-arbitration and a fast reaction
time through self slave selection mechanisms.

Figure 6. Core bus interconnection

All these characteristics contribute to the performance of the SPARClet TM 90C701 processor, allowing
one effective cycle per instruction even in presence of wait states due to the natural latency of
memories and/or peripherals. The following figure shows how the 90C701 core bus interleaves device
and memory accesses.

Figure 7. Example of interleaved transactions on core bus

In this example SPARClet TM is retrieving two instructions and one data in eight cycles. A regular
RISC processor using traditional bus protocol will retrieve the two instructions and data in 16 cycles.

90C701 MATRA MHS

24 Preview Rev.C (13/11/95)

3.3 90C701 On-Chip Peripherals

3.3.1 Bus Interface Controller (BIC)

Figure 8. 90C701 Bus Interface Controller

The 90C701 Bus Interface Controller (BIC) provides direct handling of DRAM, SRAM, and ROM
memories as well as external I/O devices. The BIC features include :

up to 256 MB accessing
48 MB directly controlled by the 90C701
three independent device controllers (2 banks of 8 MB per device controller)
No-multiplexed address/data bus
8/16/32 bit data accesses
8-bit boot access
large scope of devices supported (SRAM, ROM, DRAM, FIFO, I/O couplers)
Direct Memory Access supported
CAS before RAS refresh for selected devices
Self-refresh support
User/supervisor address space mapping
External clock synchronous

Within the 256-MB Memory and I/O addressable Space (MIOS), the Bus Interface Controller directly
control 48-MB without external glue logic. This direct decoded area is included in one of the four
64-MB addressable memory pages.

The 48-MB direct address space is splitted into three segments of 16-MB. Three independent device
controllers in the BIC are responsible for mapping memories and I/O devices within these segments.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 25

Figure 9. Memory and I/O Addressing Space (MIOS)

Each device controller provides a pair of programmable chip selects and all share the byte enable
control signals. The table below shows three possible configurations using the BIC.

Device Controller Device Configuration

0 ROM 2 banks of 8MB
1 DRAM 2 banks of 8MB
2 Motorola type I/O device 2 I/O devices

0 ROM, DRAM 1 bk DRAM, 1 bk ROM
1 Intel type I/O device 1 I/O device
2 Motorola type I/O device 2 I/O devices

0 ROM, SRAM 2 banks of 8MB
1 DRAM 1 bk ROM, 1bk SRAM
2 Intel type I/O device 1 I/O devices

Table 13.Possible System Configurations

Not Addressable

90C701 MATRA MHS

26 Preview Rev.C (13/11/95)

The waveform of the two signals (per device controller) is programmable. To control their timing, two
BIC control registers per device controller, called DCR and DTCR, are available. The device control
register (DCR) is dedicated to the general control of the device. The device timing control register
(DTCR) contains timing information for the device accesses. The description of the register associated
operations is provided in"Product Description" Chapter .

3.3.2 PCM/USART

The PCM/USART module is software-configurable as a PCM or USART interface.

Figure 10.PCM/USART Block Diagram

When set up as a Universal Synchronous Asynchronous Receiver Transmitter (USART), each
module features :

5- to 8-bit character length selection
Parity bit option (Even, Odd, One, Zero, No Parity)
1 or 2 stop bits (asynchronous mode)
Break character detection
Parity, overrun and framing error detection
Internal/External Clock
Receiver and Transceiver Fifos
Theoritical Speed up to 8 Mb/s at 50MHz

Running as a PCM interface, coupled with the internal Communication coprocessor, it supports the
HDLC or V110 protocols up to 8 Mbits/s (Full Duplex).

MATRA MHS 90C701

Rev.C (13/11/95) Preview 27

3.3.3 General Purpose Timer

This is a general purpose timer based on two 16-bit counters : the counter and the scaler. It can
generate interrupts and external waveforms. The timer is triggered by external events or system clock.
The timer is controlled by six registers: the Input Handler, the Scaler, the Scaler Reload Register, the
Counter, the Counter Reload Register, and the Shaper. The Input Handler rules the external pins
configuration: edge or level counting, active edge, etc. The Shaper allows the generation of
programmable duty cycles, thus providing the PWM capability.

The Input Handler contains the attributes of the external counting events.

3.3.4 OS Timers

This 32-bit decremental timer generates a trap at "0" detection. Depending on the Reload value, it can
generate time reference intervals from one to 2 32 clock cycle (86 s at 50 MHz). It serves to support the
Operating System task scheduling.

3.3.5

The watchdog is an additional feature of the OsTimer, with a reduced functionality:

Load and Reset commands performed on the Counter Register will reload the watchdog while the
Command Register content is discarded. The watchdog output signal has to be wired externally to the
RESET_ input (possibly through external circuitry) or also to the reset inputs of an external
peripheral).

As we use a 32-bit decremental timer, the Watchdog duration can be tweaked up to 2 32 clock cycles.
(86 s at 50 MHz)

3.3.6 Peripheral Interface Adapter (PIA)

This cell allows the attributes of a single port pin to be programmed. This is done by using a dedicated
command register which determines :

- if the port is input or output
- any filtering functions on the port (polarity, noise reduction, level or edge detection and
masking) are ruled by the same Input Handler as the timer's one.
- the interrupt level associated to the port

So any PIA external pin can be used as an input, an output, or as an external hardware interrupt.

90C701 MATRA MHS

28 Preview Rev.C (13/11/95)

MATRA MHS 90C701

Rev.C (13/11/95) Preview 29

Chapter III

Product Description

90C701 MATRA MHS

30 Preview Rev.C (13/11/95)

4 90C701 Programming Model
4.1 SPARC Compliance

The SPARCletTM architecture is compliant to SPARC V8 1, and follows some of the recommendations
proposed in SPARC V8 complement (the SPARC-V8 Embedded architecture specification) 2.

4.1.1 The 90C701 and the SPARC V8

SPARCletTM implements the SPARC V8 architecture specification as described in the architecture
manual. This means that SPARC compatibility is respected and any developed SPARC V8 tool is
directly applicable to SPARClet TM. Some SPARCletTM implementation dependent features have been
proposed in the 90C701, and those will be highlighted in this chapter.

In the following section an [V8SID] flag will refer to the V8 SPARClet TM Implementation Dependent
features. For more details about the V8 architecture specifications refer to the official SPARC V8
manual.

4.1.2 The 90C701 and the SPARC V8 Complement - SPARC V8E

The SPARC V8 complement (SPARC V8E) was released by SPARC International in 1994. The
SPARC V8E has better performance than the SPARC V8 to support real-time and embedded
applications. The V8E specification recommends implementation and architecture enhancements at
several levels, such as instructions, real-time I/O, tracing, and emulation techniques.

The SPARCletTM architecture follows some of these recommendations. In the following section a
[V8E] flag will refer to the SPARClet TM V8E features. For more details about the V8E architecture
specifications refer to the official SPARC V8E release 1 document.

1 The SPARC Architecture Manual Version 8, SPARC International, Inc 535 Middlefield Road, Suite 210 Menlo Park,
California 94025.

2 SPARC-V8 Embedded (V8E) Release 1 Architecture Specification.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 31

4.2 Memory Organization

The 90C701 can access to a 4-GByte address space. 256-MB of the MIOS (decribed previously) are
offered to support external devices such as ROM, SRAM, DRAM, and peripheral devices.

The 4-GByte addressing space is divided into four segments:

Address Name Usage Space

0x3FFFFFFF-0x00000000 CMS Cacheable Memory Segment 1 GB
0x7FFFFFFF-0x40000000 NCMS Not Cacheable Memory Segment 1 GB
0xBFFFFFFF-0x80000000 IOS Input/Output Segment 1 GB
0xFFFFFFFF-0xC0000000 SCS System Control Segment 1 GB

Only 512-MB can be physically addressed per segment. According to address bit A29, one location
(@) within this 512-MB space can be accessed by two logical address locations @+0x20000000 and
@+0x00000000, as shown in the following figure.

Figure 11.Segment Organization

4.2.1 System Control Segment (SCS)

The system Control Segment (SCS) is only accessible in supervisor mode and includes the instruction
and data cache control registers and the bus interface controller registers.

Figure 12.System Control Segment

90C701 MATRA MHS

32 Preview Rev.C (13/11/95)

4.2.2 Input/Output Segment (IOS)

Figure 13.Input/Output Segment

The Input/Output Segment (IOS) has two subsegments. The higher subsegment is allocated to the
on-chip peripherals. The following table shows the 90C701 on-chip peripherals mapping.

 Offset in On-chip peripheral Designation
 IOS_@_OnPa

0x2600000 USART/PCM3 Synchronous Serial Interface
0x2400000 USART/PCM2 Synchronous Serial Interface
0x2200000 USART/PCM1 Synchronous Serial Interface
0x2000000 USART/PCM0 Synchronous Serial Interface
0x1E00000 Watchdog System Watchdog
0x1C00000 OSTimer1 Operating System Timer
0x1A00000 OSTimer0 Operating System Timer
0x1800000 GPTimer1 General Purpose Timer
0x1600000 GPTimer0 General Purpose Timer
0x1400000 PIA9 Peripheral Interface Adapter
0x1200000 PIA8 Peripheral Interface Adapter
0x1000000 PIA7 Peripheral Interface Adapter
0x0E00000 PIA6 Peripheral Interface Adapter
0x0C00000 PIA5 Peripheral Interface Adapter
0x0A00000 PIA4 Peripheral Interface Adapter
0x0800000 PIA3 Peripheral Interface Adapter
0x0600000 PIA2 Peripheral Interface Adapter
0x0400000 PIA1 Peripheral Interface Adapter
0x0200000 PIA0 Peripheral Interface Adapter
0x0000000 CLK Ctrl Clock Management

Table 14.90C701 on-chip peripherals mapping

The lower subsegment is dedicated to the off-chip peripherals. These are decoded by the Bus interface
controller. This segment is one way to address the resources available in the MIOS area, which has
been described in the previous chapter 90C701 On-Chip Peripherals section Bus Interface
Controller (BIC).

MATRA MHS 90C701

Rev.C (13/11/95) Preview 33

4.2.3 Not Cacheable Memory Segment (NCMS)

This segment is the second way to address the memory available in the MIOS area. Note, however,
that all memory accesses will be not cacheable. The caches will be ignored in this area .

4.2.4 Cacheable Memory Segment (CMS)

This is the third an last way to address the MIOS area. All the accesses will go through the two caches
before going to the available memory.

The 512-MB of these two last segments (NCMS/CMS) is divided in two 256-MB subsegments. The
lower subsegment is reserved for 8-bit MIOS resource accesses (only load/fetch accesses authorized).
The higher subsegment is dedicated to 32-Bit MIOS resource accesses. The lower subsegment can be
used to boot on 8-bit boot ROM.

Figure 14.Cacheable Memory Segment

90C701 MATRA MHS

34 Preview Rev.C (13/11/95)

4.2.5 Logical to Physical MIOS Addresses Translation

The redundant mapping from the logical 4-GByte to the physical 256-MB MIOS space, provides the
best flexibility for the system configuration. All possible views are offered in the MIOS area. i.e.
SRAM, ROM, I/O, 8-bit, 32-bit, cacheable, not cacheable. The following figure summarizes the three
logical addressing spaces of the MIOS.

(1) MIOS is viewed as off-chip peripherals area
(2) MIOS is viewed as not cacheable 32-bit and 8-bit area
(3) MIOS is viewed as cacheable 32-bit and 8-bit area.

A complete system can be configured following a combination of these three views.

Figure 15.Logical to Physical MIOS Addresses Translation.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 35

Boot at Reset

At reset, the 90C701 will fetch first instructions starting at the address 0x0. The processor addresses
the boot ROM, assuming the availability of an 8-bit boot ROM device even if the physical ROM is
32-bit data width. The Device controller will handle the generation of the four addresses to the 8-bit
boot ROM to rebuild the 32-bit word fetched by the 90C701. If a 32-bit boot ROM is used, then
consecutive byte addresses of the bootstrap have to be written to the ROM device, taking account of
word alignment as shown in the following example :
Bootstrap

0x0 sethi %hi(_Start),%g1
0x4 jmp %g1 + %lo(_Start)
0x8 nop
:
:
0x10000030(_Start) nop ;first instruction of the 32bit code segment
0x10000034 sethi %hi(0), %l0

BootROM (physical implementation)

0x0 first byte of sethi %hi(_Start),%g1
0x4 second byte of sethi %hi(_Start),%g1
0x8 third byte of sethi %hi(_Start),%g1
0xC fourth byte of sethi %hi(_Start),%g1

0x10 first byte of jmp %g1 + %lo(_Start)
0x14 second byte of jmp %g1 + %lo(_Start)
0x18 third byte of jmp %g1 + %lo(_Start)
0x1C fourth byte of jmp %g1 + %lo(_Start)

0x20 first byte of nop
0x24 second byte of nop
0x28 third byte of nop
0x2C fourth byte of nop

0x30 nop ;(_Start label)
0x34 sethi %hi(0), %l0

90C701 MATRA MHS

36 Preview Rev.C (13/11/95)

4.3 Data Types and Alignment

The 90C701 recognizes two fundamental data types:

Signed Integer : 8, 16, 32, and 64 bits.
Unsigned Integer : 8, 16, 32, and 64 bits

 The format widths are defined as:

Byte : 8-bit
Halfword : 16-bit
Word/Singleword : 32-bit
Tagged Word : 32-bit (30-bit value plus 2 tag bit)
Doubleword : 64-bit

Halfword accesses must be aligned on a 2-byte boundary; word accesses (which include instruction
fetches) must be aligned on a 4-byte boundary; and double-word accesses must be aligned on an
8-byte boundary. An improperly aligned address causes a load or store instruction to generate a
mem_address_not_aligned trap. SPARC V8 is a big-endian architecture. However, SPARClet TM is
capable of handling big and little endian architectures. This feature improves flexibility and
performance in embedded systems using different types of peripherals. The addressing mode can be
selected with the field LE in the Processor State Register.

4.4 Registers

The 90C701 includes two types of registers: general-purpose or "working" data registers and
control/status registers. The 90C701 CPU general-purpose registers are called r registers, and the
communication coprocessor working registers are called cp registers. The 90C701 CPU control/status
registers include:

Processor State Register (PSR) [V8SID]
Window Invalid Mask (WIM)
Trap Base Register (TBR)
Multiply/Divide Register (Y)
Program Counters (PC, nPC)
Ancillary State Registers (ASR0, 1, 15, 17, 18, 19, 20, 21, 22)[V8SID][V8E]
Communication coprocessor State Register (CSR) [V8SID]

The 90C701 contains 176 general-purpose 32-bit r registers. They are partitioned into 8 global
registers, plus 8 sets composed of 8 local and 8 in registers, plus 32 alternate registers. The global
register r[0] produces the value zero. If the destination field indicates a write into r[0], no register is
modified and the result is discarded.

A register window comprises the 8 in and 8 local registers of a particular register set, together with
the 8 in registers of an adjacent registers set, which are addressable from the current window as out
registers. See the figure in the Chapter SPARCletTM Architecture.

The 32 alternate registers are viewed as an alternate window registers [V8E] and provide the support
for fast context switching on interrupt. The usage of the Alternate window registers is based on the
value of the AW bit (Alternate Window Bit) of the PSR (if AW=1, the alternate set of registers is
used). The alternate window registers are organized as shown in the following figure. The two first
registers are used to save the PC, and nPC values.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 37

Figure 16.Alternate Window Registers

Because WIM, TBR, Y, PC, nPC registers have no addition to SPARC V8 definition, they will not be
described here. Only the PSR, the ASRs, and the CSR will be described in the following sections.

4.4.1 Processor State Register (PSR)

Two bits have been added to the V8 PSR_reserved field. The bit LE (Little Endian), when set, inverts
the two less significant bits of the addresses. The bit AW (Alternate Window) , when set, allows the
alternate window mode. The bit EE (Enable Extension), when asserted, enables the AW , LE
associated functionalities and extends the trap model using the type registered in ASR17_trap_model
field. Otherwise the default trap model is the precise traps.

31-28 27-24 23-20 19-17 16 15 14 13 12 11-8 7 6 5 4-0

IMPL VER ICC reserved AW LE EE EC EF PIL S PS ET CWP

Table 15.90C701 Processsor State Register (PSR)

90C701 MATRA MHS

38 Preview Rev.C (13/11/95)

4.4.2 Ancillary State Registers (ASRs)

The 90C701 implements nine specific ancillary state registers:

ASR Description

0 Copy of Y register
1 Implementation Extension Register [V8E]
15 Nop register. RDASR from ASR15 creates a nop equivalent instruction.
17 Copy of ASR1 register (IER)
18 Performance Counting register. This register can be used for measure.
19 Stop register. RDASR from ASR19 stops the processor.
20 Fault address register. Contains the address of the fault creating instruction.
21 Fault Status register
22 Alternate Window Configuration register

The following figures show the different fields of ASR17, 18, 21, and 22.

Implementation Extension Register (IER-ASR17)

31-14 13-12 11-2 1 0

Reserved _trap_model _trap_base_offset Reserved _single_vector_trap

Table 16. Implementation Extension Register (ASR17)

ASR17_single_vector_trap Bit 0. When asserted all traps target one single vector.
The address is the addition of TBR_trap_base_address
and ASR17_trap_base_offset

ASR17_trap_base_offset Bit 2 through 11. Offset to be added to
TBR_trap_base_address when single vector trap
mode is selected.

ASR17_trap_model Bit 12 through 13. This field indicates whether all traps
must be precise, or if deferred traps or/and interrupting
traps have been allowed.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 39

Performance Counting register (PCR-ASR18)

31-16 15 -0

_timer_control _timer_count

Table 17.Performance Counting Register (ASR18)

ASR18_timer_count Bit 0 through 15. This field is used as a 16-bit timer.

ASR18_timer_control Bit 16 through 31. This field is dedicated to the control
of the timer. (Operations will be described in a forthcoming
document.

Fault Status Register (FSR - ASR21)

31-7 6 5 4 3-2 1 0

reserved _store _privilege_violation _full_support _reserved _double_faul
t

_error

Table 18.Fault Status Register (ASR21)

ASR21_error Bit 0. When asserted an error has occurred.

ASR21_double_fault Bit 1. Indicates that a trap occured while ET=0 (Traps
disabled).

ASR21_full_support Bit 4. Indicates that the Fault Address Register content is
correct.

ASR21_privilege_violation Bit 5. When set, a user/supervisor access violation has been
detected.

ASR21_store Bit 6. Indicates that the fault was created by a store instruction

note : LDSTB and SWAP are classified as Load instructions.

Alternate Window Configuration Register (AWCR - ASR22)

31-16 15 14-12 11-4 3-0

_IRL_mask _double_fault_mask Reserved _trap_type Reserved

Table 19.Alternate Window Configuration Register (ASR22)

ASR22_trap_type Bit 4 through 12. The trap type as defined in V8.

ASR22_double_fault_mask Bit 15. When asserted it authorizes the double fault
detection (so avoiding the Error Mode).

ASR22_IRL_mask Bit 16 through 31. 1 bit for one interrupt level (15). When
set, the interrupt level will be associated to the alternate
window registers.

90C701 MATRA MHS

40 Preview Rev.C (13/11/95)

Communication coprocessor State Register (CSR)

The CSR register fields contain Communication Coprocessor mode and status information. The CSR
is read and written by the CHRDCXT and CHWRCXT instructions.

31-26 25-20 19-14 13 12 11-9 8 7-5 4 3 2 1 0

_outbuf
_count

_inbuf
_count

_inreg
_count

_inbuf
_asis

_inreg
_asis

_mode Reserve
d

_coder
_decode

r
_count

_decod
e

_error

_end _of
_message

_outre
g

_full

_inreg
_empty

_cp
_freez

e

Table 20.Coprocessor State Register

CSR_outbuf_count Bits 31 through 26 are the indication of significant bits
in coprocessor output buffer.

CSR_inbuf_count Bits 25 through 20 are the indication of the significant
bits in coprocessor input buffer.

CSR_inreg_count Bits 19 through 14 are the indication of significant bits
in coprocessor input register.

CSR_inbuf_asis Bit 13 indicates that the corresponding data chunk in the
input buffer has to be processed without translation
(for start and end flags in HDLC mode for example).

CSR_inreg_asis Bit 12 indicates that the corresponding data chunk in the
input register has to be processed without translation
(for start and end flags in HDLC mode for example).

CSR_mode Bits 9 through 11 are used to specify the type of operation
to be performed on the bit stream by the co-processor;
i.e.. HDLC decode/encode, V110 decode/encode.

CSR_coder_decoder_count Bits 5 through 7 indicates a count used for the coder and
decoder processing.

CSR_decode_error Bit 4 indicates that an abnormal end of message has been
detected; i.e. 7 consecutive "1" have been seen on the
input bit stream while decoding HDLC.

CSR_end_of_message Bit 3 indicates that an end of message condition has been
detected while HDLC decoding.

CSR_outreg_full Bit 2 indicates if the output register does or does not contain
significant data (32 bits).

.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 41

CSR_inreg_empty Bit 1 indicates if the input register contains significant
data or garbage. The number of significant bits is given
by the CSR_inreg_count field.

CSR_cp_freeze Bit 0 when asserted the coprocessor context is frozen.

4.5 Branching Control

In addition to the SPARC V8 control-transfer instructions (CTI), the SPARClet TM architecture
enhances the performance of the "branch on integer condition codes" instructions (Bicc).

To reduce the number of cycles per instruction in the intensive processing loop, all 90C701 Bicc
instructions will predict the issue of the transfer if the condition code is generated during the previous
cycle. In that case, the prediction is made "backward", i.e. predicted as taken for backward branches
and as not taken for forward branches. Missing on a prediction will cost 1 wait state.

The 90C701 implements also the "branch on coprocessor condition codes" [V8SID] instructions.

4.6 Interrupts, Traps, and Exceptions

Traps are controlled by two registers: exception and interrupt requests via the enable traps (ET) field
in the PSR, and interrupt requests via the processor interrupt level (PIL) field in the PSR.

We suggest that designers refer to the V8 manual to analyze the ET and PIL control schemes. The
90C701 implements three "implementation-dependent-exceptions". Two are reporting errors in the
communication co-processor and one is reporting a double fault situation. The following table shows
all exceptions and interrupt request priority and tt values of the 90C701.

double_fault This trap occurs when an exception appears while ET=0 if the
current window is not the Alternate Window Register.
This exception is helpful in the software development
phase (It avoids entering in Error Mode).

cp_push_error This exception occurs when the CPPUSH instruction is
executed and the CSR_inreg_empty is not set (=0). This
trap means that an initiative to push data to the co-
processor input register has been taken while this register
is already occupied by data.

cp_pull_error This exception occurs when the CPPULL instruction is
executed and the CSR_outreg_full is not set (=0). This
trap means that an initiative to pull data from the co-
processor output register has been taken while this
register has no data.

The 31 different interrupt sources of the 90C701 can be mapped on the 15 available interrupt levels.
A specific field is reserved in the peripheral control registers to associate the IRL (Interrupt Request
Level) value to the interrupt source. The 90C701 interrupt sources are listed in the following table.

90C701 MATRA MHS

42 Preview Rev.C (13/11/95)

Exception or Interrupt Request Priority tt

reset 1 NA
double_fault 2 0x6F
data_store_error 2 0x2B
instruction_access_error 2 0x3B
instruction_access_exception 5 0x01
privileged_instruction 6 0x03
illegal_instruction 7 0x02
cp_disabled 8 0x24
window_overflow 9 0x05
window_underflow 9 0x06
mem_address_not_aligned 10 0x07
data_access_error 12 0x29
data_access_exception 13 0x09
tag_overflow 14 0x0A
cp_push_error 15 0x64
cp_pull_error 15 0x65

trap_instruction 16 0x80 - 0xFF

interrupt_level_15 17 0x1F
interrupt_level_14 18 0x1E
interrupt_level_13 19 0x1D
interrupt_level_12 20 0x1C
interrupt_level_11 21 0x1B
interrupt_level_10 22 0x1A
interrupt_level_9 23 0x19
interrupt_level_8 24 0x18
interrupt_level_7 25 0x17
interrupt_level_6 26 0x16
interrupt_level_5 27 0x15
interrupt_level_4 28 0x14
interrupt_level_3 29 0x13
interrupt_level_2 30 0x12
interrupt_level_1 31 0x11

Table 21.Exception and Interrupt Request Priority and tt Values

MATRA MHS 90C701

Rev.C (13/11/95) Preview 43

Source Peripherals

usart_pcm_0_tx_error USART/PCM 0
usart_pcm_0_rx_error
usart_pcm_0_tx_char_ready
usart_pcm_0_rx_char_received

usart_pcm_1_tx_error
usart_pcm_1_rx_error USART/PCM 1
usart_pcm_1_tx_char_ready
usart_pcm_1_rx_char_received

usart_pcm_2_tx_error USART/PCM 2 (90C701B)
usart_pcm_2_rx_error
usart_pcm_2_tx_char_ready
usart_pcm_2_rx_char_received

usart_pcm_3_tx_error USART/PCM 3 (90C701B)
usart_pcm_3_rx_error
usart_pcm_3_tx_char_ready
usart_pcm_3_rx_char_received

os_timer_0_event_done OSTIMER 0

os_timer_1_event_done OSTIMER 1

watchdog_event_done WATCHDOG

gp_timer_0_event_done GPTIMER 0

gp_timer_1_event_done GPTIMER 1

pia_b0_edge_level PIA
pia_b1_edge_level
pia_b2_edge_level
pia_b3_edge_level
pia_b4_edge_level
pia_b5_edge_level
pia_b6_edge_level
pia_b7_edge_level
pia_b8_edge_level
pia_b9_edge_level

Table 22.90C701 Interrupt sources

90C701 MATRA MHS

44 Preview Rev.C (13/11/95)

4.7 90C701 Additional Instructions

The 90C701 implements the following application specific instructions: SCAN, SHUFFLE, Write
Communication Coprocessor Register, Read Communication Coprocessor Register, Push data to
Communication coprocessor, Pull data from Communication Coprocessor, Multiply and Accumulate
Instructions and Branch on Communication Coprocessor condition code.

Table 23. 90701 Additional Instruction Set

Mnemonic Operands Description

UMAC reg_source1, reg_source2(or imm), reg_dest Unsigned multiply and accumulate

SMAC reg_source1, reg_source2(or imm), reg_dest Signed multiply and accumulate

UMACd reg_source1, reg_source2(or imm), reg_dest Unsigned double operand Multiply and
Accumulate using Y register to hold the most
significant bits

SMACd reg_source1, reg_source2(or imm), reg_dest Signed double operand Multiply and
Accumulate using Y register to hold the most
significant bits

UMULd reg_source1, reg_source2(or imm), reg_dest Unsigned double operand Multiply using Y
register to hold the most significant bits

SMULd reg_source1, reg_source2(or imm), reg_dest Signed double operand Multiply using Y
register to hold the most significant bits

SCAN reg_source1, reg_source2(or imm), reg_dest Identify most significant set/cleared bit in
data item

SHUFFLE reg_source1, reg_source2(or imm5),
reg_dest

Bit, couples, nibble, bytes or half words
swapping

CPWRCXT reg_source1, context_reg Update a co-processor context register from
IU register

CPRDCXT context_reg, reg_dest Save a co-processor context register into IU
register

CPPUSH reg_source1,reg_source2 Pushes a chunk of data into coprocessor
input register

CPPUSHA reg_source1,reg_source2 Pushes a chunk of data into coprocessor
input register with Asis bit set.

CPPULL reg_dest Pulls a 32 bits of data from coprocessor
output register

CBccc label Branch on Coprocessor Condition Codes

The following SPARC V8 Instructions are not implemented : MULScc , UMULcc , SMULcc , UDIV
, UDIVcc , SDIV , SDIVcc , FLUSH , All FP instructions , RDASR and WRASR for unimplemented
ASRs

The following SPARC V8E Instruction is not implemented : DIVScc

MATRA MHS 90C701

Rev.C (13/11/95) Preview 45

4.7.1 SCAN instruction

Table 24. SCAN instruction

opcode op3 operation

SCAN 101 100 Scan for first occurence of "1" or "0" bit

Format (3) :

31-30 29-25 24-19 18-14 13 12-5 4-0

10 Destination (rd) opcode (op3) Source 1 (rs1) 0 Unused (0) Source 2 (rs2)

10 Destination (rd) opcode (op3) Source 1 (rs1) 1 13 bit immediate

Description:

The SCAN instruction returns the location of the first bit in %rs1 that differs of the value of the most
significant bit of %rs1 or the location of the first "1" or "0" bit of source register %rs1. SCAN works
as follows:

1) The value of %rs1 is xored on a bit-wise basis with the mask obtained by shifting right by
one bit and sign extending the content of %rs2 (or imm13 if the immediate bit is set).

2) The number of the bit position of the first "1" in the resulat from 1) above is returned to the
destination register %rd. Bit numbers range from 0 for the most significant bit to 31 for the least
significant bit. A "1" in the most significant bit (MSB) position returns a value of 0, while the
first "1" in the least significant bit (LSB) position returns a value of 31.

Suggested assembly language syntax:

scan %rs1,%rs2 (or imm13),%rd

Traps : None

90C701 MATRA MHS

46 Preview Rev.C (13/11/95)

4.7.2 SHUFFLE instruction

Table 25. SHUFFLE instruction

opcode op3 operation

SHUFFLE 101 101 Swaps the adjacent bits, couples, nibbles, bytes or half
words

Format (3) :

31-30 29-25 24-19 14-18 13 12-5 4-0

10 Destination (rd) opcode (op3) Source 1 (rs1) 0 Unused (0) Source 2 (rs2)

10 Destination (rd) opcode (op3) Source 1 (rs1) 1 13 bit immediate

Description :

Using the 5 less significant bits of %rs2 or imm13 as operand, this instruction swaps:

- adjacent bits of %rs1 (if rs2[0] is set)
- then adjacent couples of bits of the result (if rs2[1] is set)

 - then adjacent nibbles of the result (if rs2[2] is set)
- then adjacent bytes of the result (if rs2[3] is set)
- then adjacent half words of the result (if rs2[4] is set).

The final result is stored in the the %rd register.This instruction can be used to switch from little
endian to big endian or inversely, or to perform any kind of 32 bits data shuffling. In case %rs2 is
used as operand, rs2[31:5] bits have to be set as "0".

Suggested assembly language syntax :

shuffle %rs1,%rs2 (or imm13),%rd

Traps : None

MATRA MHS 90C701

Rev.C (13/11/95) Preview 47

4.7.3 MAC instructions

Table 26. MAC instructions

opcode op3 operation

UMAC 111110 Unsigned multiply and accumulate

UMACd 101110 Unsigned multiply and accumulate with double operand

SMAC 111111 Signed multiply and accumulate

SMACd 101111 Signed multiply and accumulate with double operand

UMULd 001001 Unsigned multiply with double operand

SMULd 001101 Signed multiply with double operand

Format (3):
31-30 29-25 24-19 14-18 13 12-5 4-0

10 Destination (rd) opcode (op3) Source 1 (rs1) 0 Unused (0) Source 2 (rs2)

10 Destination (rd) opcode (op3) Source 1 (rs1) 1 13 bit immediate

Description :

The MAC instructions perform a multiplication of the two source operands and accumulate the result
in the Y register (most significant bits) concatenated with the rd register (less significant bits).

SMAC and UMAC perform the following computation:

Y..rd = Y..rd + (rs1 * rs2 (or imm13,depending of the immediate bit value))
The computation is signed for SMAC and unsigned for UMAC.

UMACd and SMACd perform the following computation:

 Y[8::0]..r(d + 1)..rd = Y[8::0]..r(d + 1)..rd + (rs1 * rs2 (or imm13))

Y[31] is set if an overflow (for SMACd) or a carry (for UMACd) occurred in the previous
equation, and stays untouched otherwise.
UMUL and UMULd work the same way as UMAC and UMACd with Y and rd initialized at
0x0 before starting the computation.

Suggested assembly language syntax :

umac %rs1,%rs2 (or imm13),%rd
umacd %rs1,%rs2 (or imm13),%rd
smac %rs1,%rs2 (or imm13),%rd
smad %rs1,%rs2 (or imm13),%rd
umul %rs1,%rs2 (or imm13),%rd
umuld %rs1,%rs2 (or imm13),%rd
smul %rs1,%rs2 (or imm13),%rd
smuld %rs1,%rs2 (or imm13),%rd

Traps: None

Note : ".." stands for the concatenation

90C701 MATRA MHS

48 Preview Rev.C (13/11/95)

4.7.4 CPRDCXT / CPWRCXT: Read / Write an Communication Coprocessor Context
Register

Table 27. CPRDCXT / CPWRCXT Instruction Set

opcode op3 opc operation

CPRDCXT 110 110 000000100 Read Coprocessor Context Register

CPWRCXT 110 110 000000011 Write Coprocessor Context
Register

Format (3):

31-30 29-25 24-19 18-14 13-5 4-0

10 Destination (rd) opcode (op3) Source 1 (rs1) CP Opcode (opc) Source 2 (rs2)

Description:

These 2 instructions are used to read/write the Communication coprocessor internal register set :
%CSR, %FIFO, %POLY and %CRC from/to a window register. Note that the CPWRCXT
%rs1,%FIFO is not suitable to load the input of the Coder/decoder, as it would not write the InReg
Count in the CSR register. The CPPUSH instruction has been dedicated to this purpose.

Suggested assembly language syntax:

cprdcxt %cpreg,%rd
cpwrcxt %rs1,%cpreg

Traps: cp_disabled

MATRA MHS 90C701

Rev.C (13/11/95) Preview 49

4.7.5 CPPUSH[a] :

Table 28.CPPUSH[a] Instruction Set

opcode op3 opc operation

CPPUSH 110 110 000000000 Pushes a bit sequence of up to 32 bits
in the coder/decoder input register

CPPUSHa 110 110 000000001 Pushes a bit sequence of up to 32 bits
in the coder/decoder input register

with Asis bit set

Format (3) :

31-30 29-25 24-19 18-14 13-5 4-0

10 Destination (rd) opcode (op3) Source 1 (rs1) CP Opcode (opc) Source 2 (rs2)

Description:

This instruction writes a stream of up to 32 bits from %rs1 to %InReg . It simultaneously writes the
number of significative bits in %InReg (less or equal to 32 bits) from the 6 less significative bits of
%rs2 to the %InReg Count field of the CSR. The CPPUSHa instruction sets the %InReg Asis bit of
the %CSR, thus indicating that the content of %InReg has to be processed with no translation.If
%InReg is not detected as empty when this instruction is executed, the coprocessor will generate a
coprocessor exception.

Suggested assembly language syntax :

cppush %rs1,%rs2
cppusha %rs1,%rs2

Traps : cp_disabled
 cp_push_error

90C701 MATRA MHS

50 Preview Rev.C (13/11/95)

4.7.6 CPPULL

Table 29.CPPULL Instruction Set
opcode op3 opc operation

CPPULL 110 110 000000010 Pulls a 32 bits processed
sequence out of the

coder/decoder output
register

Format (3):

31-30 29-25 24-19 18-14 13-5 4-0

10 Destination (rd) opcode (op3) Source 1 (rs1) CP Opcode (opc) Source 2 (rs2)

Description :

The CPPULL transfers the content of the %OutReg register to a window register. The OutReg Full
field of the CSR register must be set when this instruction is executed otherwise a Coprocessor
Exception will be generated.

Suggested assembly language syntax :

cppull %rd

Traps : cp_disabled
cp_pull_error

MATRA MHS 90C701

Rev.C (13/11/95) Preview 51

4.7.7 CBccc

Table 30.CBccc Instruction Set

opcode op2 cond operation

CBccc 111 xxxx
depends on the condition

Branch on HDLC
coprocessor condition code

Format (2):
31-30 29 29-25 24-22 21-0

0 a Test Condition Opcode (op2) 22-Bit displacement

Description:

The CBccc performs a branch to the defined label if the condition code is true. As for the other
branches , the "annul bit" can be set or not to control the execution of the instruction located in the
delay slot that immediately follows the transfer instruction .The address of the targeted label is
calculated as:

PC (actual value of the Program Counter) + (sign extnd (disp 22) * 4)

Suggested assembly language syntax:

cbn{,a} - never taken branch
cbe{,a} - branch if %InReg is empty
cbf{,a} - branch if %OutReg full
cbef{,a} - branch if %InReg is empty or %OutReg full
cbr{,a} - branch if the coprocessor is running
cber{,a} - branch if %InReg is empty or if the coprocessor is running
cbfr{,a} - branch if %OutReg is full or if the coprocessor is running
cbefr{,a} - branch if %InReg is empty or %OutReg full or if the

coprocessor is running
cba{,a} - branch always taken
cbne{,a} - branch if %InReg is not empty
cbnf{,a} - branch if %OutReg is not full
cbnef{,a} - branch if %InReg is not empty and OutReg is not full
cbnr{,a} - branch if the coprocessor is not running
cbner{,a} - branch if %InReg is not empty and the coprocessor is not

running
cbnfr{,a} - branch if %OutReg is not full and the coprocessor is not

running
cbnefr{,a} - branch if %InReg is not empty and %OutReg is not full and

the coprocessor is not running

Traps: cp_disabled

90C701 MATRA MHS

52 Preview Rev.C (13/11/95)

5 90C701 Operations and Register Description
5.1 Communication Coprocessor

The coprocessor is designed to enhance the 90C701's performance when supporting HDLC or V110
communication protocols. It processes bit stream by blocks of up to 32 bits. The coprocessor is
composed of two independent entities: the CODER/DECODER and the CRC generator.

Figure 17.Communication Coprocessor Block Diagram

The CODER/DECODER run continuously based on the transcoding sequence programmed in
cp_StateReg (either HDLC or V110) : this is called the background process. The CPPUSH or
CPPUSHA instruction loads cp_InReg with a new block of up to 32 bits of data to be processed
(CPPUSHA sets the Asis bit up, which means that the bit stream has to be processed as is , without
any translation. This keeps the frame start and stop sequences unchanged).

In parallel, the count of valid bits entered in cp_InReg is written to the corresponding field in CSR
(Coprocessor State Register, see description Section 4.4). As soon as cp_InBuf is empty, the contents
of cp_InReg is shifted to cp_InBuf. Then, the bits are processed LSB first by the CODER/DECODER
at a 1-bit per cycle rate. The CODER/DECODER outputs the processed bit stream to the cp_OutBuf
register. It is then transferred to cp_OutReg so long as cp_OutReg is detected as not full .

The translated bit sequence can then be extracted from cp_OutReg to a register file's window register
by the CPPULL instruction. As the code sequence has to be optimized so that the program extracts the
cp_Outreg content just after this one has been updated, it uses a Bccc (Branch on Coprocessor
Condition Code) just before the CPPULL to make sure the coding/decoding process has been
completed. Note that the output length (conversely to the input length) is fixed at 32 bits.

The CRC computation is performed automatically in parallel to the coding/decoding operation, and
the result is available in the cp_crc register. The CRC calculation consists of a polynomial division of
cp_InReg content by the content of cp_poly register. However, if a CRC computation is needed
without the corresponding CODER/DECODER operation, a special opcode field in the cp_StateReg
register allows to perform CRC computation only.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 53

Registers Description

FIFO register (cp_fifo) : depending on the executed instruction, this register targets either InReg or
OutReg.

 A write to cp_fifo (CPWRCXT) actually writes the source operand to cp_Inreg which previous content
is transferred to cp_Inbuf, which previous content is transferred to cp_OutBuf, which previous content is
transferred to cp_OutReg. It intends to restore the coprocessor after a routine switch
A read from cp_fifo (CPRDCXT) transfers cp_OutReg to the destination register.

So the communication coprocessor does not have its own register file and uses directly the main one.

POLY register (cp_poly) : contains the divider the input bit sequence is to be divided by
polynomial division during the Crc computation.

CRC register (cp_crc) will host the result (partial remainder) of the redundancy check.

90C701 MATRA MHS

54 Preview Rev.C (13/11/95)

5.2 Bus Interface Controller

The 90C701 Bus Interface Controller acts in two modes according to the request area. The first mode
is acting when the generated address is included in the 48Mbytes direct selectable pages. In this mode
the selected device controller will handle the generation of the parametrized chip selects accordingly
with the contents of DCR and DTCR registers. The second mode is acting when the request access is
outside the 48Mbytes but inside the 256 Mbytes Memory & I/O segment (MIOS). In this mode the
bus interface controller of the 90C701 will act as traditional bus controller and generated transactions
on the external IoBus.

Mode 1: Direct Control of the attached devices

In this mode the selected device controller will generate the dedicated timing for the DSELx¯¯¯¯¯¯[1:0], and
DBE¯¯¯¯[3:0] signals. The two following figures shows two typical access timings. One can be devoted to
I/O device or static RAM, and the second to DRAM. Differences are coming from the address
multiplexing mode.

Figure 18.DSEL¯¯¯¯ ̄ and DBE¯¯¯¯ timings when Addresses are not multiplexed

MATRA MHS 90C701

Rev.C (13/11/95) Preview 55

Figure 19.DSEL¯¯¯¯ ̄and DBE¯¯¯¯ timings when Addresses are multiplexed.

Device Control Register (DCR)

26 25 24 23 22 21-20 19 18 17 16

_configuratio
n

_lock

_programmabl
e

_output_1_loc
k

_programmabl
e

_output_0_lock

_refres
h

_mux
_addr
_enabl

e

_page
_mode

_select
_advance

d

_select
_delaye

d

_advance
d_byte

_enable

_delayed
_byte

_enable

15-12 11-8 7-4 3 2 1 0

_device
_select_1

_device
_select_0

_byte
_enable

_programmable
_output_1_enabl

e

_programmable
_output_0_enable

_programmable
_output_1_value

_programmable
_output_0_value

Table 31.Device Control Register (DCR)

DCR_configuration_lock Bit 26 when asserted the device configuration is locked

DCR_programmable_output_1_lock Bit 25 when asserted the signal polarity fields are locked
(DCR_programmable_output_1_lock,
DCR_programmable_output_1_enable,
DCR_programmable_output_1_value)

DCR_programmable_output_0_lock Bit 24 when asserted the signal polarity fields are locked
(DCR_programmable_output_0_lock,
DCR_programmable_output_0_enable,
DCR_programmable_output_0_value)

90C701 MATRA MHS

56 Preview Rev.C (13/11/95)

DCR_refresh Bit 23, when asserted means that the controlled device is
a refreshable device. The refresh mode is enable.

DCR_mux_addr_enable Bit 22, when asserted the device is expecting its addresses
from MA[11:0] on the IoBus with the corresponding timings
figure 19.

DCR_page_mode Bit 20 through 21. Different multiplexed addresses
configurations if DCR_mux_addr_enable is asserted.

DCR_select_advanced Bit 19, when asserted the signal DSELx¯¯¯¯¯¯[1:0] of the IoBus
is advanced of one clock half cycle. Ignored if (x1) clock.

DCR_select_delayed Bit 18, when asserted the signal DSELx¯¯¯¯¯¯[1:0] of the IoBus
is delayed of one clock half cycle. Ignored if (x1) clock.

DCR_advanced_byte_enable Bit 17, when asserted the signal DBE¯¯¯¯[3:0] of the IoBus
is advanced of one clock half cycle. Ignored if (x1) clock.

DCR_delayed_byte_enable Bit 16, when asserted the signal DBE¯¯¯¯[3:0] of the IoBus
is delayed of one clock half cycle. Ignored if (x1) clock.

DCR_device_select_1 Bits 12 through 15, specify the conditions to select the
DSELx¯¯¯¯¯¯[1] control line according to the address and
mode (Read/Write).

DCR_device_select_0 Bits 8 through 11, specify the conditions to select the
DSELx¯¯¯¯¯¯[0] control line according to the address and
mode (Read/Write).

DCR_byte_enable Bits 4 through 7, specify the conditions to generate the
byte enable signals DBE¯¯¯¯[3:0] according to the address
and mode (Read/Write).

DCR_ programmable_output_1_enable Bit 3, when asserted the DCR_programmable_1_value
is used as DSELx¯¯¯¯¯¯[1] signal active value.

DCR_ programmable_output_0_enable Bit 2, when asserted the DCR_programmable_0_value
is used as DSELx¯¯¯¯¯¯[0] signal active value.

DCR_ programmable_output_1_value Bit 1, active value of DSELx¯¯¯¯¯¯[1] signal.

DCR_ programmable_output_0_value Bit 1, active value of DSELx¯¯¯¯¯¯[0] signal.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 57

Device Timing Control Register (DTCR)

30 29 28 27 26 25-24 23-22

_timing_lock _addr_to
_select_wr

_select_to
_addr_wr

_addr_to_byte
_enable_wr

_byte_enable
_to_addr_wr

_select_to_addr _select_to_muxe
d

21-20 19-18 17-16 15-13 12-8 7-5 4-0

_addr_to_select _addr_to
_byte_enable

_byte_enable
_to_addr

_select
_precharge

_select_width _byte_enable
_precharge

_byte_enable
_width

Device Timing Control Register (DTCR)

DTCR_timing_lock Bit 30, when asserted timing are locked.

DTCR_addr_to_select_wr Bit 29, when asserted the field DTCR_addr_to_select is
used as a timing for write access only.

DTCR_select_to_addr_wr Bit 28, when asserted the field DTCR_ select_to_addr is
used as a timing for write access only.

DTCR_addr_to_byte_enable_wr Bit 27, when asserted the field
DTCR_addr_to_byte_enable is used as a timing for
write access only.

DTCR_byte_enable_to_addr_wr Bit 26, when asserted the field
DTCR_ byte_enable_to_addr is used as a timing for
write access only.

DTCR_select_to_addr Bits 24 through 25, number of cycles from DSELx¯¯¯¯¯¯[1:0]
to A[24:2], XA[1:0]

DTCR_select_to_muxed Bits 22 through 23, number of cycles from DSELx¯¯¯¯¯¯[1:0]
to MA[11:0]

DTCR_addr_to_select Bits 20 through 21, number of cycles from A[24:2],
XA[1:0] to DSEL¯¯¯¯¯x[1:0]

DTCR_addr_to_byte_enable Bits 18 through 19, minimum number of cycles from A[24:2],
XA[1:0] to DBE¯¯¯¯ [̄3:0].

DTCR_byte_enable_to_addr Bits 16 through 17, minimum number of cycles from
DBEx¯¯¯¯¯[3:0] to A[24:2], XA[1:0].

DTCR_select_precharge Bits 13 through 15, minimum number of necessary deasserted
DSELx¯¯¯¯¯¯[1:0] between two accesses.

DTCR_select_width Bits 8 through 12, minimum number of cycles for DSELx¯¯¯¯¯¯[1:0]

to be asserted.

DTCR_byte_enable_precharge Bits 5 through 7, number of cycles of DBE¯¯¯¯[3:0]
to be not asserted.

90C701 MATRA MHS

58 Preview Rev.C (13/11/95)

DTCR_byte_enable_width Bits 0 through 4, number of cycles of DBE¯¯¯¯[3:0]
to be asserted.

Refresh register (RR)

This register is a general Bus Interface Controller register. The refresh when active is dispatched to all
device controllers for which the DCR_refresh bit is asserted. The refresh mode proposed is the CAS
before RAS refresh. This register is 28 bit wide and composed as follows:

27 26 25 24-20 19-18 17-16 15-0

_refresh_overflow _refresh_lock _refresh_enable _refresh
_select_width

_refresh_select
_to_byte_enable

_refresh_byte
_enable_to_selec

t

_refresh_period

Table 33.Refresh Register (RR)

RR_refresh_overflow Bit 27, when this bit is active more than four
refresh cycles have not been satisfied.

RR_refresh_lock Bit 26, when asserted the refresh configuration
is locked.

RR_refresh_enable Bit 25, when assserted the refresh is enabled.

RR_refresh_select_width Bits 20 through 24, DSELx¯¯¯¯¯¯[1:0] signals will
be active during the number of cycles
contained in this field.

RR_refresh_select_to_byte_enable Bit 18 through 19, number of cycles between
DSELx¯¯¯¯¯¯[1:0] and DBE¯¯¯¯[3:0].

RR_refresh_byte_enable_to select Bit 16 through 17, number of cycles between
DBE¯¯¯¯[3:0 and DSELx¯¯¯¯¯¯[1:0].

RR_refresh_period Bit 0 through 15, this field indicates the period
used for the refresh.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 59

SpaceMap register (SMR)

This register is used in order to split the memory space handled by the bus interface controller in
supervisor and user area. If accesses are done in user mode to a supervisor area, an error is returned to
the CPU and the access is not performed. The BIC checks automatically the access using the
following rule: A[25:11] & SMR_map_mask = SMR_map_value.

This register is 32bit wide and composed as follows:

31 30 29-15 14-0

_check_false _check_true _map_value _map_mask

Table 34.SpaceMap Register (SMR)

SMR_check_false Bit 31. When set, indicates that the space is protected if
the condition is false.

SMR_check_true Bit 30. When set, indicates that the space is protected if
the condition is true.

 SMR_map_value Bit 15 through 29, This field is used in the check
equation in order to define the tagged page.

SMR_map_mask Bit 0 through 14 This field is used in the check
rule in order to define the page size

Mode 2: Access to external decoded MIOS devices

In this mode the BIC is working as a traditional bus controller and generate all signals associated to a
transaction on the external IoBus . The detail of the bus protocol will be described in a further
document. However, the goal of this bus is to minimize external glue logic needed to interconnect any
kind of devices. Here are the listed features of the Iobus.

Clock synchronous
Multimaster capability
Demultiplexed operation
8/16/32 bit data accesses

90C701 MATRA MHS

60 Preview Rev.C (13/11/95)

5.3 PCM/USART

The transmitter and the Receiver are independent entities (except id "Loop Back" is used) composed
of a baud rate generator , a Fifo,a Sync Register which contains up to two synchronizing characters
and a Command Register which controls the sequencer. The receiver has an additional Status register
indication errors on received data streams. The Usart can generate interrupts on errors or fifo
information via the Command Register. The so-called "Interface" registered have been implemented
to allow the highest flexibility to the serial link parameters.

Table 35. PCM/USART registers.
 Register Bit Width Description

Transmitter FIFO 12 8-bits words Contains data to be transmitted

Transmitter Baud Rate Count 20 Generate 50 % duty cycle baud rate

Transmitter Baud Rate Reload Value 20 Contains half baud rate value

Transmitter Sync 16 Contains up to 2 sync characters

Transmitter Command 32 Controls operating modes, handshaking and interrupt level

Transmitter Status 17 Contains the transmitter status bits

Transmitter Interface 13 Additional command bits

Receiver FIFO 12 8-bits words Contains received data

Receiver Baud Rate Count 20 Generates 50 % duty cycle baud rate

Receiver Baud Rate Reload Value 20 Contains half baud rate value

Receiver Sync 16 Contains up to 2 sync characters

Receiver Command 32 Controls operating modes, handshaking and interrupt level

 Receiver Status 24 Contains the transmitter status bits

 Receiver Interface 5 Additional command bits

5.3.1 Register mapping

The registers are mapped as follow :

Table 36. PCM/USART register mapping

 Register A20-A15 Access

Transmitter FIFO 0 0 x x x x Store only (double/word/byte)

Transmitter Baud Rate Count 0 1 0 0 0 0 Load / Store

Transmitter Baud Rate Reload Value 0 1 0 0 0 1 Load / Store

Transmitter Sync 0 1 1 0 0 0 Load / Store

Transmitter Command 0 1 0 1 0 1 Load / Store

 Transmitter Status 0 1 0 0 1 0 Load / Store

Transmitter Status Reset 0 1 0 0 1 1 Load/Store

 Transmitter Interface 0 1 0 1 0 0 Load / Store

 Transmitter Internal Reset 0 1 0 1 1 0 Store only

 Transmitter Re-Sync 0 1 0 1 1 1 Store only

MATRA MHS 90C701

Rev.C (13/11/95) Preview 61

 Register A20-A15 Access

Receiver FIFO 1 0 x x x x Load only (double/word/byte)

Receiver Baud Rate Count 1 1 0 0 0 0 Load / Store

Receiver Baud Rate Reload Value 1 1 0 0 0 1 Load / Store

Receiver Sync 1 1 1 0 0 0 Load / Store

Receiver Command 1 1 0 1 0 1 Load / Store

 Receiver Status 1 1 0 0 1 0 Load / Store

 Receiver Status Reset 1 1 0 0 1 1 Load/Store

 Receiver Interface 1 1 0 1 0 0 Load / Store

 Receiver Internal Reset 1 1 0 1 1 0 Store only

 Receiver Re-Sync 1 1 0 1 1 1 Store only

The registers can be divided in 4 categories :

the real registers already mentionned on PCM/USART Registers table
the virtual registers on which Stores only intend to send a command to the module controller
(Internal Reset, Re-Sync)
the two Fifo registers which are located at the same address, and target the Transmitter Fifo
on a Store and the Receiver Fifo on a Load.
the Receiver and Transmitter Status Reset registers : they actually target the Status
registers.When loaded, they target the Status content and clear all the errors.When Stored,
they act as for a regular store, except that if an error bit is set by the module at the same time,
it is written in priority.

5.3.2 Transmitter section

The transmitter is mainly ruled by the Transmitter Command register, which defines the main
parameters of the serial link. 13 other control bits have been added in the Transmitter Interface
Register to enhance the flexibility of the physical interface parameters.

Transmitter Command Register (TCR)

The Transmitter Command Register contains the operating modes, controls the transmission
sequencer and handles Modem handshaking signals. When "Mode" bit is set (Synchronous mode) and
both "Sync" bits are set, the module is configured as a PCM Transmitter.

Table 37. Transmitter Command Register (TCR)

31 30 29 28 27 26 25-24 23 22-18 17-13

_Clock
_Gen

_Frame
SyncGen

_CtsEn _CtsValue _ClkEn _ClkValue _Sync _Mode _CharNu
m

_IrlChar
_Level

12-9 8 7 6-5 4 3-2 1 0

_Irl Char
_Num

_Loop
_Back

_Hole/stop _PValue _PEn _Dbl _TdValue _Ten

90C701 MATRA MHS

62 Preview Rev.C (13/11/95)

TCR_Ten Transmitter Enable

TCR_TdValue Td Signal Value

TCR_Dbl Data bit length (00= 5bits,01= 6 bits, 10= 7 bits, 11= 8 bits)

TCR_PEn Parity Enable

TCR_PValue Parity Value, selects the parity (00= zero, 01= one, 10= odd, 11= even)

TCR_Hole/Stop Allows the generation of the Hole (PCM) or Stop (USART) bits

TCR_Loop_Back Enables the loop back feature

TCR_IrlChar_Num Low limit of free slots in the Transmitter Fifo.When this limit is
reached, the module's controller generates an Interrupt to the processor

TCR_IrlChar_Level Level of the generated Interrupt

TCR_CharNum Number of free characters in the Transmitter Fifo.

TCR_Mode Selects the operationg Mode (0= Asynchronous, 1= Synchronous)

TCR_Sync Number synchronizing characters (00= reserved, 01 = one, 10= two,
11=PCM)

TCR_ClkValue Value of the TClk signal (provides a way to use TClk as a regular I/O when it
is not used for the serial link)

TCR_ClkEn Selects what will be output on the TClk pin : if ClkEnthe internal baud rate is
sent out, otherwise the level contained in Clk_Value is output.

TCR_CTSValue Self explanatory : contains the value present on the Cts lead.

TCR_CTSEn When set, forces the use of Cts in the serial protocol."0" allows to ignore Cts.

TCR_FrameSyncGen When set, Frame Synchronisation is generated

TCR_ClockGen When set, the TClk signal is generated and output.

Transmitter Sync Register (TSR)

The Transmitter Sync Register contains two 8-bits characters to be emitted to synchronize the Receiver.

Table 38.Transmitter Sync Register (TSR)

31-17 16 15-8 7-0

Reserved _Z _SyncChar2 _SyncChar1

The TSR_Z bit, when set, replaces the Synch Characters by a tristate level.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 63

Transmitter Interface Register (TIR)

The Transmitter Interface register provides additional control bits, which ensure the full flexibility on
the serial link parameters :

Table 39.Transmitter Interface Register (TIR)
12 11 10 9 8 7 6 5 4 3 2 1 0

_Lock _Clk_
Invert

_Fs/CTS
_Invert

_HoleEn _Hole
Value

_Fs1En _Fs1Va
l

_Fs0E
n

_Fs0val _TdEn _Td1Val _Td0En _Td0Va
l

TIR_Td0Val allows to translate all the transmitted "0" datas to "1"
(When Td0Val= 1)

TIR_Td0En tristates all the transmitted "0" datas.

TIR_Td1Val allows to translate all the transmitted "1" datas to "0"
(When Td1Val= 0)

TIR_Td1En tristates all the transmitted "1" datas (Td1En= 1)

TIR_Fs0Val,_Fs0En same functionality as Td0Val and Td0En applied on Frame
Synchronisation signals Fs0

TIR_Fs1Val,_Fs1En same functionality as Td1Val and Td1En applied on Frame
Synchronisation signals Fs1

TIR_HoleValue,_HoleEn same functionality as Td0Val and Td0En applied on Hole signal

TIR_Fs/Cts_Invert allows level inversion of Fs/Cts signal

TIR_Clock_Invert allows level inversion of the transmission clock

TIR_Lock locks the content of the current configuration

Transmitter Status Register (TSTR)

The Transmitter Status provides the status of the module, and is able to generate an Interrupt Request
to the processor (software programmable level) for various reasons. All those possible origins are
individually maskable.

Table 40.Transmitter Status Register (TSTR)
16 15 14 13 12-5 8-4 3 2 1 0

_Sync
_Mask

_Fifo_Empt
y_ Mask

_Underrun
_ Mask

_Framing_Erro
r_Mask

Irl
Level

_Char
Free

_Sync _Fifo_
Empty

_Underru
n

_Framing
_ Error

90C701 MATRA MHS

64 Preview Rev.C (13/11/95)

TSTR_Framing_Error,_Framing_Error_Mask The Framing_Error bit flags the occurence of a
framing problem. If the Framing_Err_Mask bit
is set, this occurence will generate a Interrupt
request to the CPU

TSTR_Underrun,_Underrun_Mask Same behaviour with an underrun detection

TSTR_Fifo_Empty,_Fifo_Empty_Mask Same behaviour with a Fifo empty state detection.

TSTR_Sync, _Sync_Mask Same behaviour with a Transmitter Synchronisation
detection.

TSTR_Char Free Provides the number of free characters in the
Transmitter Fifo

TSTR_Irl_Level Allows to assign the Interrupt Request Level that will
be generated for all the previous detected reasons.

5.3.3 Receiver section

The receiver section follows the same global organization as the transmitter from a register content
standpoint. We will mainly focus on the field exclusively implemented in the Receiver section. For
those which are similar to the Transmitter section ones, please refer to the Transmitter section chapter.

The Receiver Command Register (RCR)

Table 41.Receiver Command Register (RCR)

31 30 29 28 27 26 25-24

Reserved _Ignore P _RtsEn _RtsValue _Int/Ext_Sync _ClkValue _Sync

23 22-18 17-14 13-9 8 7 6-5 4 3-2 1 0

_Mode _CharNu
m

_IrlChar
Level

_IrlChar
Num

Loop
Back

Reserved _PValue _PEn _Dbl _Rd
Value

_Ren

RCR_In/Ext_Sync chooses between Internal and External Synchronisation clock

RCR_RtsValue displays the current logical state of the CTS lead

The Receiver Synchronisation Register (RSR)

Table 42.Receiver Synchronisation Register (RSR)
31-17 16 15-8 7-0

Reserved _Z _SyncChar2 _SyncChar1

MATRA MHS 90C701

Rev.C (13/11/95) Preview 65

The Receiver Interface Register (RIR)

Table 43.Receiver Interface Register (RIR)
4 3 2 1 0

_Lock _RtsEn _Clock_invert _Rts/Fs_invert _Rd_invert

The Receiver Status Register (RSTR)

Table 44.Receiver Status Register (RSTR)
24 23 22 21 20 19 18 17

Break State_
Mask

_Sync
_Mask

_Fifo_Full
_ Mask

Spurious
Char_Mask

Break
Mask

_Overrun
_Mask

_Parity_Erro
r_Mask

Framing
Error_Mask

16-13 12-8 7 6 5 4 3 2 1 0

Irl Err_Level _Fifo_Char_
Num

Break
State

_Sync _Fifo_Full _Spurious
_Char

_Break _Overrun _Parity_Erro
r

_Framing
_ Error

5.4 Real-Time and General Purpose Peripherals

The timers and PIAs are managed through dedicated registers which are programmable through
memory-like transactions :

Table 45. Peripherals programming instructions

 Write Store (ST) instructions

 Read Load (LD) instructions

For some locations, the Load instruction also resets the flag values. This feature is called "Load and Reset".

5.4.1 Timers

Operating System Timer

This is a 32 bit decremental timer which generates an interrupt upon zero detection. It is managed by
3 registers of 32 bit:

the Reload Value Register (OSRVR) which contains the interrupt period
the Counter Register which contains the timer value (OSCTR)
the Command Register, decribed below. (OSTCR)

Table 46.Operating System Timer

31-11 10 9 8 7 6 5-2 1 0

Reserved _Reload_
Lock

_Counter
_Lock

_Comman
d _Lock

_HWZ _CE _Irl _IrlEn _IrlActive

90C701 MATRA MHS

66 Preview Rev.C (13/11/95)

OSTCR_Reload_Lock When set, Store Instruction into RVR disabled

OSTCR_Counter_Lock Store Instruction into Counter Register disabled
(one time programmable after reset)

OSTCR_Command_Lock Store Instruction into Command Register disabled

OSTCR_HW Halt when zero

OSTCR_CE Count Enable (active high)

OSTCR_Irl Interrupt Request Level

OSTCR_IrlEn Irl Enable (active high)

OSTCR_IrlActive When set, means that Counter Register reached zero

Watchdog

The watchdog is an additional instanciation of the OsTimer, with a reduced functionality:

Load and Reset commands performed on the Counter Register will reload the watchdog while the
Command Register content is discarded. If the watchdog is enabled, the software has to reload
periodically the watchdog timer, otherwise when this one reaches the zero state, the watchdog output
signal will go low.The user has different options to connect this output. It can be wired externally to
the RESET¯¯¯¯¯¯ input (possibly through an external circuitry) or also to the reset inputs of some external
peripherals.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 67

V8e Compliant Timer

This is a general purpose timer based on two 16 bit counters. It can generate interrupts and external
waveforms. The timer is triggered by external events or system clock. The timer is controlled by 6
registers: the Input Handler, the Scaler, the Scaler Reload Register, the Counter, the Counter Reload
Register and the Shaper.

The Timer Input Handler Register (TIHR) contains the attributes of the external counting events.

Table 47. Timer Input Handler Register (TIHR)

31- 6 5 4 3:2 1 0

Reserved _IhPuls _IhInv _IhWidth _IhEn _IhM

TIHR_IhPuls Input Handler Pulse Command (0= edge, 1= level)

TIHR_IhInv Input Handler Invert Command.When set, input is active high

TIHR_IhWidth Input Handler Width Command defines the sampling size. Out of
those n samples, a majority vote defines the value taken in account.

00: 1 sample
01: 3 samples (2 identical values set the definitive value)
10: 5 samples (3 identical values set the definitive value)
11: 7 samples (5 identical values set the definitive value)

TIHR_IhEn Input Handler Enable Command

TIHR_IhM Input Handler Mask

The Scaler (16 bit decrementer) is the less significant half of the timer. The Counter (16 bit
decrementer) is the most significant half of the timer. The Scaler Reload Register contains the data to
be loaded into the Scaler, upon specified conditions. The Counter Reload Register contains the data to
be loaded into the Counter, upon specificied conditions.

The Shaper (TSHR) determines the waveform of the output generated by the timer and the level of the
possibly generated interrupt.

Table 48. Shaper Register (TSHR)

31-14 13-10 9 8 7 6 5 4 3 2 1 0

Reserve
d

_Irl_Level _IrlEn _IrlActiv
e

_Pwm _StartBit _Czar _Szacz Reserve
d

_Sync _Cz _SzCz

TSHR_Irl Interrupt Request Level

TSHR_IrlEn Interrupt Enable (active high)

TSHR_IrlActive Interrupt Active (indicates that the counter reached zero.
Software resetable)

90C701 MATRA MHS

68 Preview Rev.C (13/11/95)

TSHR_Pwm Pulse Width Modulation (When set, the Counter and the Scaler
are reloaded when they reach zero.When Scaler reaches zero,
it stops until Counter reaches zero.The value of the output
bit is Czar when Scaler is not zero and Sczar when Scaler is zero.

TSHR_StartBit TOUT (Timer Out) output value when the Timer is synchronized
(Scaler and Counter reloaded) by asserting the Sync bit of the
Shaper Register

TSHR_Czar Counter zero after Restart.If Pwm bit is zero, Czar is the value of
the of the "Timer Out" output when the Counter reaches zero for
the first time after a restart. If Pwm is set, Czar is the value of
the "Timer Out" signal when Scaler is not zero.

TSHR_Szacz Scaler zero after counter zero .If Pwm bit is zero, Czar is the value
of the of the "Timer Out" output when the Scaler reaches zero for
the first time after counter has reached zero. If Pwm is set, Czar
is the value of the "Timer Out" signal when Scaler is zero.

TSHR_Sync Synchronisation (When set by a Store instruction, forces the
reload of both Scaler and Counter). Active during one cycle
after the Store.

TSHR_Cz Counter zero (When set, counter stops when ir reaches zero.Otherwise,
it is relaoded and restarts decrementing)

TSHR_SzCz Scaler zero and Counter zero (If set, the Scaler stops when both
Scaler and Counter reach zero.Otherwise, the Scaler is reloaded)

The Shaper allows the 90C701 to support the PWM mode.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 69

5.4.2 Peripheral Interface adapter (PIA)

This cell allows the attributes of a single port pin to be programmed. This is done by using the PIA
Command Register (PCR) which content determines :

if the port is input or output
any filtering functions on the port (polarity, noise reduction, level or edge detection and masking)
the interrupt level associated to the port if any

Table 49. PIA command register (PCR)

31-13 12-11 10 9-6 5 4 3-2 1 0

Reserved _I/OConf _Out _Irl _IhPuls _IhInv _IhWidth _IhEn _IhOut

PCR_I/OConf I/O Configuration
00: Input reprogrammable
01: Output reprogrammable
10: Input not reprogrammable (until a hard reset occurs)
11: Output not reprogrammable (until a hard reset occurs)

PCR_Out Output value

PCR_Irl Interrupt request level

PCR_IhPuls Input Handler Pulse Command (0= level, 1= Edge)

PCR_IhInv Input Handler Invert Command

PCR_IhWidth Input Handler Width command defines the sampling process of the input:
00: 1 sample
01: 3 samples (2 identical values set the definitive value)
10: 5samples (3 identical values set the definitive value)
11: 7samples (5 identical values set the definitive value)

PCR_IhEn Input Handler Enable Command (When set, Input is enqble)

PCR_IhOut Input Handler Output Value

90C701 MATRA MHS

70 Preview Rev.C (13/11/95)

6 90C701 Pin Out

Pin Name Type Description

Clock,Power and Reset Management

VCCO Power 5V(3.3V) +/-10% Output buffers power supply

VSSO Power Output buffers ground

VCCI Power 5V(3.3V) +/-10% core and input buffers power supply

VSSI Power Core and input buffers ground

CLK I CLocK

RESET¯¯¯¯¯¯ I Hardware RESET

HALT¯¯¯¯¯ I HALTs the Fetch and Decode Unit at a logical boundary

DEBUG[2:0] O program flow indication, for DEBUG purpose

Memory controller interface signals (IoBus)

D[31:0] I/O Data bus

A[25:2] I/O Address bus : 256 Megabytes of address space.

XA[1:0] I/O eXtended Address, to be matched with AP[1:0]

REQ¯¯¯¯ O IoBus REQuest for full address space (from master to arbiter)

XREQ¯¯¯¯¯¯ O IoBus eXternal REQuest for multimaster configuration (from master
to arbiter)

GNT¯¯¯¯ I IoBus GraNT to all request types (from arbiter to master)

XGNT¯¯¯¯¯¯ I IoBus eXternal GraNT for multimaster configuration. (from arbiter
to master)

AS¯¯¯ I/O IoBus Access Start

AP[1:0] I IoBus Address Prefix (defines the processor's address Identifier)

DS¯¯¯ I/O IoBus Data Strobe (from master to slave)

WR¯¯¯ I/O IoBus Write (from master to slave)

BE¯¯ [̄0] I/O IoBus Byte Enable: WordAddress[31:24]

BE¯¯ [̄1] I/O IoBus Byte Enable: WordAddress[23:16]

BE¯¯ [̄2] I/O IoBus Byte Enable: WordAddress[15:8]

BE¯¯ [̄3] I/O IoBus Byte Enable: WordAddress[7:0]

SA I/O IoBus Supervisor Access (from master to slave)

SD I/O IoBus Supervisor -Data in Supervisor space (from slave to master)

DBE¯¯¯¯[3:0] O IoBus Device Byte Enable

 DRD¯¯¯¯ O IoBus Device Read

MATRA MHS 90C701

Rev.C (13/11/95) Preview 71

Pin Name Type Description

STAT[1:0] I/O IoBus STatus - Bus transaction status (from slave to master)
 11: wait (transaction on going)
 01: OK (transaction successfully terminated)
 10: FullOK (transaction successfully terminated and success
 prediction for dual transaction to enable copy back)
 00: error (transaction terminated with error)

DSEL0¯¯¯¯¯¯[1:0] O IoBus Device Enable 0- Control lines for address space:0-16M

DSEL1¯¯¯¯¯¯[1:0] O IoBus Device Enable 1- Control lines for address space:16-32M

DSEL2¯¯¯¯¯¯[1:0] O IoBus Device Enable 2- Control lines for address space:32-48M

MA[11:0] O IoBus Multiplexed Address.(DRAM multiplexed address : 24 bit
max)

PCM/USART's signals

RXD[3:0] I PCM/USART Receive Data

RXClkx[3:0] I PCM/USART Receive bit Clock

TFS/CTS[3:0] I/O PCM Transmit Frame Synchronization /USART CTS (Clear To
Send)

TXD[3:0] O PCM/USART Transmit Data

TXClkx[3:0] I/O PCM/USART Transmit bit Clock

RFS/RTSx[3:0] I/O PCM Receive Frame Synchronization/USART RTS (Ready To
Send)

JTAG signals

TDI I jTag Data In

TDO O jTag Data Out

TCLK I jTag CLocK

TMS I jTag Mode

TRST I jTag ReSeT

PIA signals

PIA[9:0] I/O Parallel Interface Adapter

TIMER's signals

TIN [1:0] I V8e CounTeR/timer INputs

TOUT [1:0] O V8e CouNTeR/timer OUTputs

WDR¯¯¯¯¯ O WatchDog Reset

Note : all the active low signals are overlined.

90C701 MATRA MHS

72 Preview Rev.C (13/11/95)

7 90C701 Basic Configuration
The following figure outlines a typical glueless implementation using one 90C701 processor.

Figure 20. 90C701 Basic Board Configuration

CS
OE
WE

D7-0

A 18-0

RAS

CA SL

R/W

D 15-0

A8-0

CA SH

0

31:24

20:2

31:16

15:0

RD

WR

D

A

CS

R/W

D

A

CS

R/W

D

A

6

6

6

6

2

2

10

5

DSEL 0[0]

DSEL 0[1]

DSEL 1[0]

DSEL 1[1]

DSEL 2[0]

DSEL 2[1]

DB E[3:0]

MA[12:0]

DRD

R/W

D[31:0]

A[24:2]

XA[1:0]

BE[3:0]

AS

SA

SD

STAT[1:0]

DS

HALT

REQ

XREQ

GNT

XGNT

AP[1:0]

WDR

RESET

CLK

DEBU G [2:0]

CMOS
OSC

Power reset

Periph. reset

Processor ID

Arbitration

Debug tools
JTAG &

PIA

2x Timers

4x PCMs

to other
processors

90C701 1x 29F040 2x D256K16

2x Motorola

1x Intel...
or

RAS

CA SL

R/W

D 15-0

A8-0

CA SH

0

1

2

3

The left side of the drawing displays all the internal peripherals:

4 PCM lines,
2 general purpose timers
1 PIA of 10 bits

It displays also the support pins:

the JTAG and the DEBUG[2:0] outputs may be use for debug support,
the AP[1:0] inputs set the processor self-controlled address space,
the WDR¯¯¯¯ ̄ output may be used to trigger the resetting of the external peripherals,
the RESET¯¯¯¯¯¯ inputs receive the power-on low level reset pulse,
the CLK input is connected to a CMOS oscillator output.

On the right side are shown the implementation dependent features:

a boot PROM,
a main memory,
additional external devices, either "Intel"- or "Motorola"-like.

MATRA MHS 90C701

Rev.C (13/11/95) Preview 73

The boot PROM is controlled by the first device controller. DSEL0¯¯¯¯¯¯[0] is connected to the chip select
input of the device.

In fact it is possible to control a Flash ROM, using DRD¯¯¯¯ as an output enable and DBE¯¯¯¯[0] as a write
enable. One 8 bit device is enough to store up to 512 KBytes of program, however 4 devices may be
used as well to store up to 2 MBytes of program in 32 bits words. Then, the four DBE¯¯¯¯[3:0] lines
allows to write into each device. It is further possible to implement similarly another bank of standard
SRAM/FlashROM memory using DSEL0¯¯¯¯¯¯[1] as a chip select, provided the timings are the same.

The main memory is a bank of DRAM fully supported by the second device controller. DSEL1¯¯¯¯¯¯[0] is
connected to the raw address strobe inputs of the two 16 bits devices, while the four DBE¯¯¯¯[3:0] lines
are connected to the column address strobe inputs and the DSEL1¯¯¯¯¯¯[1] line is connected to the
read/write control inputs of the two devices.

Applications requiring a larger capacity may use 4 bits devices instead, the dedicated multiplexed
address bus is designed to support their heavier overall load capacitance.

The last device controller may be used to control any kind of additional external peripheral. Either the
two DSEL2¯¯¯¯¯¯[1:0] are connected to the read and write inputs of an "Intel"-like (or FIFO...) device, or to
the chip select inputs of two "Motorola"-like devices with WR¯¯¯ tied to their read/write control input.

The remaining signals may be used for arbitration and direct connexion to up to 4 other processors in
the case of a companion implementation. If there is no other possible master, all the AP[1:0], GNT¯¯¯¯
and XGNT¯¯¯¯¯ ̄inputs must be tied to a low level.

90C701 MATRA MHS

74 Preview Rev.C (13/11/95)

	Your Comments
	About this Preview
	Table of Content
	List of Figures
	List of Tables
	Product Overview
	The CPU Core
	The Core Bus
	Bus Interface & Debug Support
	On-Chip Peripherals
	Features

	Product Architecture
	SPARClet Architecture
	Performance Challenge
	Operating System Support

	The 90C701 as a SPARClet Implementation
	CPU Core
	Core Bus
	On-Chip Peripherals

	Product Description
	Programming Model
	SPARC Compliance
	Memory Organization
	Data Types and Alignment
	Registers
	Branching Control
	Interrupts, Traps, and Exceptions
	Additional Instructions

	Operations and Register Description
	Communication Coprocessor
	Bus Interface Controller
	PCM/USART
	Real-Time and General Purpose Peripherals

	Pin Out
	Basic Configuration

